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Abstract

We study the approximation gap between the dynamics of a polynomial-width neural network and
its infinite-width counterpart, both trained using projected gradient descent in the mean-field scaling
regime. We demonstrate how to tightly bound this approximation gap through a differential equation
governed by the mean-field dynamics. A key factor influencing the growth of this ODE is the local
Hessian of each particle, defined as the derivative of the particle’s velocity in the mean-field dynamics
with respect to its position. We apply our results to the canonical feature learning problem of estimating
a well-specified single-index model; we permit the information exponent to be arbitrarily large, leading
to convergence times that grow polynomially in the ambient dimension d. We show that, due to a certain
“self-concordance” property in these problems — where the local Hessian of a particle is bounded by a
constant times the particle’s velocity — polynomially many neurons are sufficient to closely approximate
the mean-field dynamics throughout training.

1 Introduction

We consider the training of the following one-hidden-layer neural network with m neurons via gradient-
based optimization:

f(x) =
1

m

m∑
i=1

σ(⟨x,wi⟩), w1, w2, ..., wm ∈ Sd−1, (1.1)

where σ : R → R is the nonlinear activation function (e.g., ReLU), and {wi}mi=1 are trainable parameters,
constrained to the sphere. Due to the nonlinearity of the activation function, the optimization landscape is
generally non-convex. However, two recent approaches have been developed to “convexify” the problem
through overparameterization (i.e., increasing the network width m) and to establish global optimization
guarantees: the neural tangent kernel (NTK) [JGH18, DZPS19, AZLS19, ZCZG20] and the mean-field anal-
ysis [NS17, CB18, MMN18, RVE18, SS20]. The NTK approach linearizes the training dynamics around
initialization under appropriate scalings, ensuring that the trainable parameters remain close to their random
initialization [COB19]. However, this condition prevents feature learning and often leads to suboptimal
statistical rates, as it fails to capture the adaptivity of neural networks [GMMM19, CB20, YH20, BES+22].

In contrast, the mean-field analysis lifts (1.1) into the (infinite-dimensional) space of measures by con-
sidering the empirical distribution of neurons ρm = m−1

∑m
i=1 δwi . Under certain regularity conditions,

one can establish weak convergence of the empirical distribution to the limiting mean-field measure as the
number of neurons tend to infinity: ρm

m→∞→ ρMF, and the trajectory of limiting parameter distribution is
characterized by a partial differential equation (PDE). This (McKean-Vlasov type) PDE description can cap-
ture the nonlinear evolution of the neural network beyond the kernel (lazy) regime, and global convergence
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can be established in the mean-field limit (m → ∞) by exploiting the convexity of the loss function (see the
review paper [BC21]).

The goal of this work is to relate properties of the mean-field limit to a finite-width neural network,
the learning dynamics of which can be viewed as a finite (interacting) particle discretization of the lim-
iting mean-field PDE. Therefore, one of the main challenges in transferring learning guarantees of the
infinite-width limit to the finite-width system lies in the non-asymptotic control of particle discretization
error (known as the propagation of chaos [Szn91, CD22]).

In the context of neural network theory, existing propagation of chaos results fall short of delivering
this non-asymptotic control. On the one hand, Exponential-in-time Grönwall-type estimates leverage the
regularity of the dynamics to propagate the Monte-Carlo error at initialisation (at scale O(1/m)) to obtain
an estimate of the form supt∈[0,T ](fρt(x) − fρmt (x))

2 ≲ expT · (m−1 ∧ η) where η > 0 is the learning
rate [MMN18, MMM19, DBDFS20]. Hence, this type of discretization error analysis is only quantitative
when the time horizon is short, such as T = Od(1) for learning staircase functions [AAM22] and T =
Od(log d) for learning certain quartic polynomials [MZD+23]. Alternatively, Uniform-in-time propagation
of chaos [HRSS19, NWS22, Chi22a] considered adding Gaussian noise to the gradient update (i.e., noisy
GD) which gives the mean-field Langevin dynamics (MFLD). The previous exponential dependency on
time can be removed under a uniform logarithmic Sobolev inequality [CRW22, SWN23, KZC+24, Nit24],
but this ultimately transfers the exponential dependency to the runtime [SWON23, WMHC24, MHWE24].
Finally, [Chi22b, CRBVE20] establish uniform-in-time results, but in the asymptotic width limit.

Consequently, despite the feature learning advantage, the function class that can be learned by neural
networks trained via gradient-descent in the mean-field regime with polynomial compute is largely unknown,
except for target functions reachable within finite (or at most log d) time horizon. It is likely that for many
interesting problems, this T = Od(log d) horizon is not sufficient for the mean-field dynamics to converge
to a low-loss solution. For instance, when the target function is low-dimensional (i.e., multi-index model),
prior works have shown that gradient-based feature learning often requires T ≳ dΘ(k) runtime, where k is
the information/leap exponent (IE) of the link function, which may be arbitrarily large [BAGJ21, ABAM23].
We therefore ask the question

Can we identify sufficient and verifiable conditions under which the mean-field limit is well-approximated
by m = poly(d) neurons up to T = poly(d) time horizon?

Our Contributions In this work, we study a teacher-student setting where the target function is parame-
terized by finitely many “teacher” neurons. Let ρMF

t denote the distribution at time t of the infinite-width
mean-field dynamics trained with projected (spherical) gradient flow on infinite data, and ρmt the m-particle
mean-field discretization of this dynamics, trained with n samples. We establish a set of conditions under
which ρmt is well approximated by ρMF

t up to the time required to learn the teacher model. The crux of these
conditions is twofold:

1. The mean-field dynamics satisfy a certain local strong convexity (Assumption 4), which states that when
a neuron is close to a teacher neuron, the local landscape is strongly convex.

2. A certain average stability parameter Javg (Assumption 2) is at most O(1/T ), where T is the convergence
time. Loosely speaking, Javg is a measure of the average sensitivity of the neurons with respect to a small
perturbation in any one neuron.

We show in Theorem 1 that if these conditions hold (along with several other regularity and technical
conditions), then for t ≤ T ,

W1

(
ρMF
t , ρmt

)
⪅

poly(d, t)

min(
√
m,

√
n)

.
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This means that poly(d, T ) neurons suffice to approximate the mean-field limit up to the time of conver-
gence. This result also gives a non-asymptotic rate of convergence of ρmt to ρMF

t with time dependence that
goes beyond the pessimistic Grönwall estimate. We remark that we do not expect propogation of chaos to
hold in the non-spherical setting, even for learning simple functions (see Remark 3).

In Theorem 2, we apply our result to a setting of learning a single index model (SIM) with information
exponent k∗ ≥ 4, for which gradient flow converges in time T = dΘ(k∗). First, we prove that in this setting,
the limiting mean-field network, trained on the population, can learn the target function at time T . Then we
use Theorem 1 to show that with m,n = dΘ(k∗), at time T , W1(ρ

MF
t , ρmt ) is small, and thus the finite-width

model ρmt also achieves small population loss.

Notation P(Ω) denotes the space of probability distributions over Ω. We use W1(ρ, ρ
′) to denote the

1-Wasserstein distance between two distributions ρ and ρ′. When µ̂ is an empirical measure of the form
µ̂ = 1

m

∑
i δwi which is clear from context, we will use the shorthand f(i) = f(wi), and denote Eif(i) :=

1
m

∑
i f(wi). We use P⊥

w := (I − wwT ). For H ∈ L2(Sd−1 × Sd−1, µ2,Rd×d), D ∈ L2(Sd−1, µ,Rd×d)
and Λ,∈ L2(Sd−1, µ,Rd), we use HΛ(w) := Ew′∼µH(w,w′)Λ(w′). We use D ⊙ Λ(w) = D(w)Λ(w).

Throughout this paper, we will use the asymptotic notation OC(X) to denote X times some constant
that depends arbitrarily on C. Whenever a term of the form C (usually with some subscript) appears, this
term is referring to a constant, meaning that its value does not depend on m,n, d (which we will take to
infinity). We use “with high probability” to mean that the probability approaches 1 as m or n approaches
infinity. This probability is taken over the neural network initialization {wi}i∈[m] and the random sample of
n data points.

2 Setting and Preliminaries

2.1 Projected Gradient Dynamics on Neural Networks

Consider a neural network to be parameterized by some distribution ρ ∈ P(Sd−1), such that

fρ(x) := Ew∼ρσ(w
Tx),

for a link function σ. We require that σ satisfies the regularity conditions in Assumption 1.
A problem is parameterized by an initial distribution for the network weights, ρ0, and a distribution D

over points (x, y) ∈ Rd × R. Given (ρ0,D), we define f∗(x) = ED[y|x]. We will train the neural network
to minimize the square loss

LD(ρ) := E(x,y)∼D(fρ(x)− y)2 .

We study the projected gradient flow dynamics of ρ induced by moving each particle w ∼ ρ in the
direction of the gradient of the loss LD(ρ), and then projecting the particle back on the sphere:

d
dtw = VD(w, ρ) := −(I − wwT )∇wFD(w) + (I − wwT )∇wEw′∼ρKD(w,w

′) (2.1)

where

FD(w) := E(x,y)∼Dyσ(w
Tx) and KD(w,w

′) := E(x,y)∼Dσ(w
′Tx)σ(wTx).

In the case where we are training with infinite data, the relevant problem parameters are (f∗, ρ0,Dx), where
Dx is the x-marginal of D. In such a setting, and when Dx is clear from context, we will use V (w, ρ)
(without any distribution subscripted) to denote the case where x ∼ Dx and y = f∗(x) deterministically.
Whenever an expectation over x appears in this paper without any explicit distribution, it should be inter-
preted as over x ∼ Dx. In this paper, we will primarily be interested in a teacher-student setting with a
ground truth measure ρ∗, such that f∗(x) = Ew∗∼ρ∗σ(x

Tw∗). Thus we will sometimes describe a problem
by (ρ∗, ρ0,Dx).
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2.2 Coupling between Mean Field and Finite-Neuron Dynamics

We will study the evolution of two different learning dynamics in this paper:

Infinite-width, infinite data mean-field dynamics. We denote the mean-field distribution at time t by
ρMF
t ∈ ∆(Sd−1), where we initialize ρMF

0 = ρ0. Each particle w ∈ Sd−1 in the mean-field dynamics evolves
according to the infinite-data velocity V (w, ρMF

t ) ∈ TwSd−1. ξt(w) ∈ Sd−1 denotes the characteristic of a
particle initialized at w and evolved under the mean-field dynamics,

d
dtξt(w) = V (ξt(w), ρ

MF
t ) ξ0(wi) = wi .

This dynamics can also be expressed though the continuity equation: d
dtρ

MF
t = ∇ · (V (w, ρMF

t )ρMF
t ).

Finite-width, finite-data dynamics. Let ρmt denote the dynamics of a distribution supported on the m
neurons under the projected gradient flow induced by the empirical loss from n training samples. Let D̂
denote the empirical distribution of the n training samples. We initialize ρm0 = 1

m

∑m
i=1 δwi , where wi ∼ ρ0

i.i.d. for each i ∈ [m]. Each particle w in the finite dynamics evolves according to the empirical velocity
VD̂(w, ρ

m
t ). We use ξ̂t(wi) to denote the location at time t of the particle initialized at wi whose dynamics

are given by

d
dt ξ̂t(wi) = VD̂(ξ̂t(wi), ρ

m
t ) ξ̂0(wi) = wi .

We will study the setting where the training data are drawn i.i.d. from an subgaussian distribution with
subgaussian label noise (See Assumption R2).

Coupling the dynamics. Let ρ̄mt be the distribution initialized at ρm0 , but that evolves according to the
dynamics V (·, ρMF

t ). That is, ρ̄mt = 1
m

∑m
i=1 δξt(wi). Note that ρ̄mt is equivalent in distribution to a random

sample of m particles from ρMF
t . Define the coupling error at neuron wi as

∆t(i) := ξ̂t(wi)− ξt(wi) ∈ Rd , i ∈ [m] ,

such that ∆0(i) = 0 for all i. Now by definition, W1(ρ
m
t , ρ̄mt ) ≤ Ei∥∆t(i)∥; thus it is easy to show that

Ei∥∆t(i)∥ gives a good bound on the function-error distance between ρMF
t and ρmt :

Lemma 1. With high probability over the draw ρm0 , we have

Ex(fρMF
t
(x)− fρmt (x))

2 ≤ 2Creg(Ei∥∆t(i)∥)2 +
2 log(m)

m
.

2.3 Description of the Dynamics of ∆

The main result of this section is Lemma 5, which gives a first-order approximation of the dynamics of
∆t(i). The quantities {∆t(i)}i evolve via their own particle interaction system, governed by two main
terms: a self-interaction term, and an interaction term. The self-interaction term is described by what we
term the local Hessian, the derivative of a particle’s velocity with respect to that particle’s position.

Definition 2 (Local Hessian). The local Hessian D⊥
t : Sd−1 → Rd×d of neuron w at time t is

D⊥
t (w) :=

(
d

dξt(w)
V (ξt(w), ρ

MF
t )

)
(I − ξt(w)ξt(w)

T ).

We will also use the abbreviated notation D⊥
t (i) := D⊥

t (wi).
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V (ξt(wi), ρ
MF
t ) V (ξt(wi), ρ̄

m
t ) V (ξt(wi), ρ

m
t ) V (ξ̂t(wi), ρ

m
t ) VD̂(ξ̂t(wi), ρ

m
t )

≤ ϵm ≈ 1√
m −EjH

⊥
t (i, j)∆t(j) D⊥

t (i)∆t(i) ≤ ϵn ≈ 1√
n

Figure 1: Decomposing d
dt∆t(i) = V (ξt(wi), ρ

MF
t ) − VD̂(ξ̂t(wi), ρ

m
t ). The approximate differences between the

terms in the rectangles are given above the arrows.

Remark 1. We call this the local Hessian because it equals the negative Hessian of the landscape of the map
ξt(wi) → Ut(ξt(wi)) := U(ξt(wi); ρ

MF
t ), where U = δL

δρ is the first-variation of the loss, so that V = ∇U ,
and ξt(wi) is restricted to the manifold Sd−1. Thus if the local landscape Ut(ξt(wi)) is convex on Sd−1, then
D⊥

t (i) is negative semi-definite.

The part of the dynamics driven by the other ∆t(j) is described by what we term the interaction Hessian,
the (rescaled) derivative of a particle’s velocity with respect to the other particles’ position.

Definition 3 (Interaction Hessian). Define the interaction Hessian H⊥
t : Sd−1 × Sd−1 → Rd×d by

H⊥
t (w,w′) :=

(
I − ξt(w)ξt(w)

T
)
∇ξt(w′)∇ξt(w)K(ξt(w), ξt(w

′))
(
I − ξt(w

′)ξt(w
′)T
)
,

We will also use the abbreviated notation H⊥
t (i, j) := H⊥

t (wi, wj).

Fact 4. For any w,w′, H⊥
t (w,w′) is a positive semi-definite kernel.

Proof. By definition of K in Equation 2.1, one can check that H⊥
t (w,w′) = Exϕx(w)ϕx(w

′)T , where we
define the feature map ϕx(w) := (I − ξt(w)ξt(w)

T )σ′(ξt(w)
Tx)x

We assume the following basic regularity assumption on the activation function and the data.

Assumption 1 (Regularity Assumption). R1 For a constant Creg, the activation σ satisfies that for j =
0, 1, 2, 3 and any subgaussian variable X , we have EX |σ(j)(X)|5 ≤ Creg/11, where σ(j) denotes the
jth derivative of σ.

R2 The distribution Dx on the covariates is subgaussian, and the noise has covariance at most 1, that is
Ey∼D|x(y − f∗(x))2 ≤ 1.

We introduce the control parameters

ϵm = d3/2 log(mT )√
m

, ϵn =
√
d log2(n)√

n
.

We will show in Lemma 17 that with high probability, the error ∥V (ξt(wi), ρ
MF
t ) − V (ξt(wi), ρ̄

m
t )∥ due to

sampling only m neurons is uniformly (over i and t) bounded by ϵm. Similarly, we will show in Lemma 21
that the error ∥VD̂(ξ̂t(wi), ρ

m
t )−V (ξ̂t(wi), ρ

m
t )∥ due to using the empirical data distribution D is uniformly

bounded by ϵn.

Lemma 5 (Parameter-Space Error Dynamics). Suppose Assumption 1 holds. With high probability, for all
t ≤ T and i ∈ [m],

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i,

where ∥ϵt,i∥ ≤ 2ϵm + ϵn + 2Creg
(
∥∆t(i)∥2 + Ej∥∆t(j)∥2

)
.

We prove Lemma 5 by decomposing d
dt∆t(i) = V (ξt(wi), ρ

MF
t )−V (ξ̂t(wi), ρ

m
t ) into four differences

(see Figure 1), and separating the first order terms (in ∆t) from higher order terms in these differences.
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An integral form for ∆t(i). Duhamel’s principle gives us a way to solve the ODE in Lemma 5 using the
solution to a simpler dynamics which only involves the local Hessian.

Definition 6 (Local Stability Matrix). Define J⊥
t,s(w) to be the matrix that solves

d
dtJ

⊥
t,s(w) = D⊥

t (w)J
⊥
t,s(w); J⊥

s,s(w) = (I − ξs(w)ξs(w)
T ).

We call this the local stability matrix, because J⊥
t,s(w) = d

dξs(w)ξt,s(ξs(w)), where ξt,s(u) denotes the
position of a neuron at time t which evolves in the mean field dynamics starting at position u at time s. We
use the shorthand Jt,s(i) := Jt,s(wi).

On the same assumptions as Lemma 5, Duhamel’s principle yields

∆t(i) =

∫ t

0
J⊥
t,s(i)

(
−EjH

⊥
s (i, j)∆t(j) + ϵs,i

)
ds. (2.2)

3 Main Result: Propagation of Chaos

3.1 Intuition and Key Challenges

To bound W1(ρ
m
t , ρMF

t ), it suffices to analyze the dynamics of ∆t given by the ODE in Lemma 5:

d
dt∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i ∥ϵt,i∥ ≤ ϵ. (3.1)

One might hope to leverage the linearity of (3.1) to solve this ODE in closed form, but unfortunately, the
time-dependent coefficient matrix, diag(D⊥

t )−H⊥
t , does not commute at different times t.

Going Beyond Grönwall. The conventional approach (see eg [MMN18]), uses the maximum Lipschitz-
ness of V (w, ρ) (in our spherical case, this translates to a bound on supi,j,t ∥D⊥

t ∥, ∥H⊥
t (i, j)∥) to bound the

RHS of (3.1) as

d

dt
∥∆t(i)∥ ≤ 2Lipmax sup

j∈[m]
∥∆t(j)∥+ ϵ. (3.2)

In standard settings, this maximum Lipschitzness is a constant, so this method can achieve no better than
the bound W1(ρ

m
t , ρMF

t ) ≤ exp(Θ(t))ϵ. The work of [MZD+23] goes further to bound (3.2) using a tight
time-dependent Lipschitz constant, yielding propagation of chaos for log(d) time. However, for problems
with polynomial-in-d time to convergence, such as learning a SIM with a high information exponent, the
approach in (3.2) is overly pessimistic, because both the local Lipschitzness at neuron i, and the ∥∆t(j)∥
are extremely non-uniform in i and j (See Fig. 2).

Equation (2.2) gives us an alternative way to approach (3.1) which can leverage the non-uniform Lips-
chitzness. Ignoring for a moment the interaction terms in Equation (2.2), we have ∥∆t(i)∥ ≈

∫ t
0 J

⊥
t,s(i)ϵs,ids,

where we recall that the perturbation matrix J⊥
t,s(i) measures of the stability of ξt(w) with respect to pertur-

bations at time s. Naively, J⊥
t,s(wi) appears to grow at an exponential rate whenever the local landscape of

the linearized loss around ξt(wi) (see Remark 1) is non-convex.
A key observation of our work is that when wi escapes certain higher-order saddles, ∥J⊥

t,s(i)∥ will be
bounded polynomially in t− s. We achieve this by showing a certain self-concordance-like property which
upper bounds D⊥

t (i) using the velocity (which is small near the saddle). Thus one part of our assumptions
will be a worst-case polynomial bound on ∥J⊥

t,s(w)∥ (see Assumption 2).
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Figure 2: Non-Uniform Dynamics in a SIM with Information Exponent 4 (f∗(x) = He4(xTw∗). We plot
D⊥

t (i), ∥∆t(i)∥, αt(wi) = |w∗ξt(wi)| for each neuron. Left: Top eigenvalue of the local hessians D⊥
t (i). Cen-

ter: ∥∆t(i)∥, Right: Alignment αt(wi) with the teacher neuron. A key challenge in the IE > 2 setting is the variance
in Lipschitzness among the different neurons, and in ∥∆t(i)∥.

The Interaction Term: A Blessing and a Curse. At first glance, the presence of the PSD interaction term
H⊥

t in (3.1) seems like it can only help us bound Ei∥∆t(i)∥. Indeed, if we ignore the local D⊥
t terms in the

ODE, we would have that d
dt∆t = −H⊥

t ∆t, and thus we could show that Ei∥∆t(i)∥2, an upper bound on
the Wasserstein-2 distance W2(ρ

m
t , ρMF

t ), is non-increasing.
However, the interaction of H⊥

t and D⊥
t can lead to precarious situations if the neurons move at non-

uniform rates. To see this possibility, suppose for some neuron wi, ∆t(i) first grows by a polynomial factor
due to D⊥

t (i), and then propagates that error, via the interaction term, to a different neuron wj . Later
on, when neuron wj escapes the saddle, it will grow ∆t(j) by a polynomial factor. The process can then
continue by “passing off” the error between neurons such that it grows in an exponential fashion, without
any neuron doing more than “polynomial growth” of the error itself.

To rule out such a scenario, we will impose an assumption that leverages the intuition that in many
teacher-student settings with uniform initialization, the neurons are dispersed before converging to the
teacher neurons. Thus on average, the interaction term – whose scale is dictated by inner product wT

i wj

– is small, and cannot propagate too much error to these neurons. Specifically, the interaction term drives
changes in the error according to the interaction Hessian, H⊥

t : an error of ∆t(j) at neuron wj causes a force
of −H⊥

t (i, j)∆t(j) on the error of neuron wi. Following Equation (2.2), this force propagates into an error
of scale Rt,s(i, j)∆s(j) on neuron wi at time t, where Rt,s(i, j) := J⊥

t,s(i)H
⊥
s (i, j). The second part of

Assumption 2 states that the average of Rt,s(i, j), over all neurons i far from supp(ρ∗), is small.

Behavior Near the Teacher Neurons. While the second part of Assumption 2 is quite powerful, we
cannot hope that it holds for neurons near the teacher neurons. Indeed, when i and j are both near some
w∗ ∈ supp(ρ∗), then ∥Rt,t(i, j)∥ = ∥H⊥

t (i, j)∥ = Ω(1). Thus for neurons near supp(ρ∗), we will need to
leverage the fact that H⊥

t is PSD. A key contribution of our work is constructing a novel potential function
which can leverage this term. We discuss this at length in Section 4.

3.2 Theorem Statement

We will now present an informal version of our assumptions and propagation of chaos result. Due to the
technicality of some of the assumptions, we defer some full statements to Appendix A. Define

Bτ := {w ∈ Sd−1 : ∃w∗ ∈ supp(ρ∗) : ∥w∗ − w∥ ≤ τ}.

The following key assumption gives average and worst-case bounds on some of the stability parameters of
the MF dynamics.

Assumption 2 (Worst-Case and Average Stability Assumption). Suppose that we have

Jmax := sup
s≤t≤T,w∈Sd−1

(
∥J⊥

t,s(w)∥,Ew∼ρ0∥J⊥
t,s(w)∥2

)
≤ poly(d, t).
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Further suppose that for all τ > 0, and given a target horizon T > 0,

Javg(τ) := sup
s≤t≤T,w′,v∈Sd−1

Ew∼ρ0∥J⊥
t,s(w)H

⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤

poly(1/τ)

T
.

Next, we will state our local strong convexity assumption. We remark that such an assumption can only
hold when ρ∗ is atomic (see Remark 2).

Assumption 3 (Local Strong Convexity (Abbreviated; see Assumption 4)). We have (CLSC, τ) locally
strongly convex up to time T , meaning that for any t ≤ T , for any w with ξt(w) ∈ Bτ , we have

D⊥
t (w) ⪯ −CLSCP

⊥
ξt(w)

√
Ex(fρMF

t
(x)− f∗(x))2.

Both Assumption 2 and 3 are verifiable via solving the deterministic mean-field dynamics ρMF
t . For

technical reasons, our result requires depends on two additional conditions. First, our theorem depends on
the rank of the interaction Hessian as ρMF

t → ρ∗ being a constant independent of the ambient dimension d.
This rank can be bounded by the following parameter, which will appear in our main theorem:

Cρ∗ := min
(
|supp(ρ∗)|,dim(supp(ρ∗))degree(σ)

)
.

Here degree(σ) is the degree of the polynomial σ (or ∞ if σ is not a polynomial). We do not expect such
an assumption to be critical; see Remark 4.

Second, we require a symmetry condition stated in Assumption 5 (in Appendix A). Loosely, this requires
that the atomic set supp(ρ∗) is transitive with respect to the group of rotational symmetries that describe the
problem. We remark that such an assumption still covers many non-trivial problems, for instance, learning
two teacher neurons in non-orthogonal positions, many neurons in orthogonal position, or a ring of evenly
spaced neurons in a circle. See Remark 6 for further discussion.

We are now ready to state the main theorem.

Theorem 1. Suppose the Assumptions 1,2,4,5 hold up to time T (if relevant). Let C be a constant depending
on CLSC, τ, δ and Cρ∗ . Suppose n and m are large enough such that J4

maxT
3(ϵn + ϵm) ≤ 1/C. Then with

high probability over the draw ρm0 , for all t ≤ T ,

Ex(fρMF
t
(x)− fρmt (x))

2 ≤ 2(W1(ρ
m
t , ρMF

t ))2 +
2Creg log(m)

m
≤ (CJmaxt(ϵm + ϵn))

2.

where ϵm = log(mT )max(d1/2Jmax,d3/2)√
m

,ϵn =
√
d log2(n)√

n
, and δ := sups≤t

√
Ex(fρMF

s
(x)− f∗(x))2.

Theorem 1 follows directly from Lemma 1 and Corollary 42 in Section D. In Theorem 2, we will apply
this theorem to the example of learning a single index function with high information exponent which takes
T = poly(d) time to learn.

Remark 2 (Local Strong Convexity). Our local strong convexity is similar to assumptions appearing in sev-
eral other works on MF neural networks [Chi22c, Assumption A5][CRBVE20, Lemma D.9]. In comparison
to the assumption these works, our assumption is stronger in that we require it for all t, not just as t → ∞;
this is necessary for our non-asymptotic analysis. However, our assumption is also weaker in that we allow
the strong convexity parameter to depend on the loss, similarly to the notion of one-point strong convexity
(see e.g., [SYS21]). Attaining the stronger non-loss-dependent strong convexity requires a strongly convex
regularization term.

In problems where the mean-field dynamics converge to ρ∗, our local strong convexity condition enforces
that when a neuron wt is close a teacher neuron w∗ ∈ supp(ρ∗), it will be sucked into w∗, and thus any small
perturbations are dampened. Local strong convexity can only hold when ρ∗ is atomic. Properties similar
to local strong convexity have been shown for various sparse optimization problem over measures (eg.
[FDGW21, PKP23]).
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3.3 Application to Single Index Model with High Information Exponent.

We will study the setting of learning a well-specified even single index function f∗(x) = σ(xTw∗), where
w∗ ∈ Sd−1, and σ(z) =

∑K
k=k∗ ckHek(z), where (a) k∗ ≥ 4, and 1

CSIM
≤ ck∗ ≤ CSIM maxk ck, (b) For all

k, ck ≥ 0 (c) σ is an even function. We restrict to the case when k∗ = 4, because the analysis for the setting
where k∗ = 2 has notable differences; namely, the escape times of the neurons is no longer non-uniform as
in Figure 2(right). We assume the initial distribution ρ0 of the neurons is uniform on Sd−1, and the data is
drawn i.i.d from the distribution D, which has Gaussian covariates, and subgaussian label noise: that is,

x ∼ N (0, Id) y = f∗(x) + ζ(x) E[ζ(x)] = 0, E[ζ(x)2] ≤ 1.

Theorem 2. Fix any δ, and suppose d is large enough in terms of δ, CSIM and K. Let T (δ) := argmin{t :
Ex(fρMF

t
(x) − f∗(x))2 ≤ δ2}. Then T (δ) = OK,CSIM(

√
d
k∗−2

δk
∗−1). If n ≥ d11k

∗
and m ≥ d13k

∗
, then

with high probability, for all t ≤ T (δ),

Ex(fρMF
t
(x)− fρmt (x))

2 ≤
OK,δ(d

3k∗)

min(
√
m,

√
n)

.

Thus, Ex(fρMF
t
(x)− fρmt (x))

2 ≤ 3δ2.

4 Overview of Proof Ideas

4.1 Potential-Based Analysis to Prove Theorem 1

We introduce a potential function of ∆t which dominates W1(ρ
m
t , ρMF

t ). Building upon the observations
from Section 3.1, we design this potential function to have the following three properties:

P1 When many neurons are near the teacher neurons, the dynamics due to the interaction hessian H⊥
t

should cause the potential to decrease.

P2 When a neuron wi is in a the locally convex region (D⊥
t (i) ⪯ 0), the dynamics due to the local

Hessian at wi should decrease the potential.

P3 The change in potential due to a perturbation of ∆ should be bounded proportionally to the average
change over the ∆i.

A natural choice for the potential function would be Ei∥∆t(i)∥2 (which upper bounds W2(ρ
m
t , ρMF

t )) be-
cause when ρMF

t ≈ ρ∗, the Dt(i) are negative definite, so d
dtEi∥∆t(i)∥2 ≈ −∆T

t H
⊥
t ∆t−2Ei∆t(i)

TDt(i)∆t(i) ≤
0. However, such a function doesn’t satisfy P3 whenever there is a lot of variance among the ∥∆t(i)∥. This
turns out to be a major issue.

To achieve P3, intuitively, the potential function should behave more like W1(ρ
m
t , ρMF

t ) than W2(ρ
m
t , ρMF

t ),
making Ei∥∆t(i)∥ another natural choice. Unfortunately, this alone does not work as potential function, be-
cause even when all neurons have converged to the support of ρ∗, it may increase under the dynamics from
the interaction Hessian. As an example, consider the case where ρ∗ = δw∗ , and thus near convergence,
H⊥

t ≈ 11T ⊗ P⊥
w∗ , where 1 ∈ {Sd−1 → R} sends all inputs to 1. Then if ∆t is very “imbalanced” (in the

sense that H⊥
t ∆t = Ei∆t(i) is large), we may have d

dtEi∥∆t(i)∥ > 0. For example suppose ∆t(i) = u for
a p fraction of the neurons, and ∆t(i) = 0 for the remaining neurons. Then d

dtEi∥∆t(i)∥ = −p+(1−p) > 0
for p < 0.5. To counteract the increase in Ei∥∆t(i)∥, we need to include in the potential function a term
which decreases whenever ∆t is very imbalanced, yet it retains a flavor of an ℓ1 norm. In order to tame the
interactions, such a term should naturally take into account the eigendecomposition of H⊥

t . To construct
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such a potential function, we will instead consider the eigendecomposition of the map H⊥
∞ (defined explic-

itly in Defintion 7), which closely approximates H⊥
t on neurons in Bτ and avoids tracking the temporal

evolution of the eigendecomposition. This ultimately allows us to leverage the PSD structure of H⊥
t .

Definition 7. Define H⊥
∞ explicitly in the following way.

H⊥
∞(w,w′) = P⊥

ξ∞(w)∇ξ∞(w′)∇ξ∞(w)K(ξ∞(w), ξ∞(w′))P⊥
ξ∞(w′),

where ξ∞(w) := argminw∗∈supp(ρ∗) ∥ξT (w)− w∗∥ and we break ties in the argmin arbitrarily.

Let Z := L2(Sd−1, ρ0;Rd) be the Hilbert space with the dot product ⟨f, g⟩Z = Ew∼ρ0f(w)
T g(w). De-

fine the action of H : (Sd−1)⊗2 → Rd×d on Z as v 7→ Hv(w) := Ew′∼ρ0H(w,w′)v(w′). In Section D.2.2,
we verify that H⊥

∞ is well defined, self adjoint, and due to the atomic nature of ρ∗, the span of H⊥
∞ is has

some finite dimension J . Therefore, H⊥
∞ admits a spectral decomposition in Z in terms of an orthonormal

basis {φj}j≤J :

H⊥
∞ =

∑
j≤J

λjφj ⊗ φj , λj ∈ R , φj ∈ Z , (4.1)

such that ∥H⊥
∞∥∗ :=

∑
j |λj | < ∞. Note that one can have multiplicities in this spectral decomposition.

For that purpose, denote by Λ = {λj ; j ≤ J} the support of the spectrum. For each λ ∈ Λ, we denote by
Vλ the subspace spanned by {φj ;λj = λ}, and let Pλ be the orthogonal projector onto that space.

Definition 8 (Balanced Spectral Decomposition of H⊥
∞ (WED ) ). We say that the spectral decomposition

(4.1) is Cb-balanced if, for all λ ∈ Λ, there exists an orthonormal basis Bλ of Vλ, and some ηλ > 0 such that
for all w ∈ Sd−1,

∑
v∈Bλ

v(w)v(w)⊤ ⪯ η2λId , and
∑

λ∈Λ η2λ ≤ Cb. We denote by Q := {(Bλ, ηλ)}λ∈Λ the
resulting set of eigenfunctions and constants.

Now, for any v ∈ Z and ∆ ∈ (Rd)⊗m, we define ϕv(∆) := |Eiv(wi)
⊤∆(i)|, and

ΨQ(∆) :=
∑
λ∈Λ

ηλ

(∑
v∈Bλ

ϕv(∆)2
)1/2

,

Finally, our potential function is

ΦQ(∆) := Ω(∆) + Ψ(∆),

with Ω(∆) = Ei∥∆(i)∥.
When the context is clear, we will write ΦQ(t) = ΦQ(∆t).

Lemma 9 (Balanced Spectral Decomposition). Suppose Assumption 5 holds. Then there exists an spectral
distribution Q which is Cρ∗ = min

(
|supp(ρ∗)|,dim(supp(ρ∗))degree(σ)

)
-balanced.

The next three lemmas show that the potential function ΦQ has the desired properties P1-P3.

Lemma 10 (Descent with Respect to Interaction Term). Let ΦQ(t) be as defined above, where Q is a Cb-
balanced spectral decomposition of H⊥

∞. Then for any τ > 0 for which the concentration event of Lemma 19
holds for S = Bτ , we have

⟨∇ΦQ(t),−H⊥
t ∆t⟩ ≤ (1 + Cb)Ei∥EjH

⊥
t (i, j)∥1(ξt(wi) /∈ Bτ ) + E10,

where E10 = OCreg,Cb(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
19
m )Ω(t)).
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Lemma 11 (Descent with Respect to Local Term). Suppose Assumption 4 holds with (CLSC, τ). Let Q be a
Cb-balanced spectral distribution. Then with C11 = OCreg,Cb(1), we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(
c
√

LD(ρMF
t )

2 − C11τ

)
ΦQ(t) +C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) +CbEi∥∆t(i)∥2.

Lemma 12 (L1 Perturbation Lemma). Let Q be a Cb-balanced spectral distribution. Let G : [m] → Rd.
Then |⟨∇ΦQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥.

Combining the three key properties of the potential function, along with Assumption 2 allows us to
bound the dynamics of the potential function in the following way (formalized in Theorem 3):

d

dt
ΦQ(t) ≤ −CLSC

√
L(ρMF

t )

C
ΦQ(t) + CJavg

∫ t

s=0
ΦQ(s)ds+ CJmax(ϵm + ϵn), (4.2)

where C = OCρ∗ ,Creg(1). Theorem 1 follows by analyzing this differential equation. We leverage Assump-
tion 2 to prove (4.2), by bounding the term Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) which arises from Lemmas 10 and 11.
Indeed, using the closed form for ∆t(i) given in Equation 2.2, we can expand

Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) ≈ Ei

∫ t

s=0
∥J⊥

t,s(i)EjH
⊥
s (i, j)∆s(j)∥1(ξt(wi) /∈ Bτ )ds

≤
∫ t

s=0
Ej∥∆s(j)∥ sup

v∈Sd−1

Ei

∫ t

s=0
∥J⊥

t,s(i)H
⊥
s (i, j)v∥1(ξt(wi) /∈ Bτ )ds

⪅ Javg

∫ t

s=0
Ej∥∆s(j)∥ds

≤ Javg

∫ t

s=0
ΦQ(s)ds.

Here the third line follows from Assumption 2 (along with a concentration argument in Lemma 18).

4.2 Self-Concordance Argument to Bound Jmax

To avoid exponential growth in J⊥
t,s, we make the following observation.

Observation 13. When the velocity V (w, ρMF
t ) of a particle w is small, so is ∥D⊥

t ∥.

To make this observation more concrete, consider the simplified case of learning a single index function
f∗(x) = σ(xTw∗) with Gaussian data, where σ(z) = Hek(z) for k > 2. We expect a similar property
may hold in other low-dimensional feature-learning problems, where the local non-convexity arises only in
a low-dimensional subspace. For a neuron wt, when αt := wT

t w
∗ is small (and assume for simplicity that

αt is positive), we have that

V (αt) :=
d

dt
αt ≈ αk−1

t , thus
d

dα
V (αt) ≈ (k − 1)αk−2

t ≈ k − 1

αt
V (αt) .

By showing that ∥D⊥
t ∥ is dominated by d

dαV (αt), we get the desired “self-concordance” property:

∥D⊥
t ∥ =

∥∥∥∥ d

dwt
V (wt, ρ

MF
t )

∥∥∥∥ ⪅
(k − 1)

αt
V (αt).

Recalling the differential equation of J⊥
t,s , we have just shown that d

dt∥J
⊥
t,s∥ ≤ (k−1)

αt
V (αt)∥J⊥

t,s∥. Note that
trivially, αt satisfies the differential equation d

dtαt = 1
αt
V (αt)αt. As a result, one can easily deduce that

∥J⊥
t,s∥ ≤

(
|αt|
|αs|

)k−1
; see Lemma 54.
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4.3 Averaging Argument to Bound Javg

Recall that in order to use our approach to achieve a propagation of chaos for polynomially sized networks,
for any w′, v ∈ Sd−1 and τ , we must have

sup
s,t≤T,w′,v∈Sd−1

Ew∼ρ0∥J⊥
t,s(w)H

⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤ Oτ

(
1

T

)
,

where T = Θ(d(k−2)/2) is the desired training time. We briefly give some intuition for why this holds in the
single-index model f∗(x) = Hek(xTw∗), which requires T = Θ(d(k−2)/2). To tightly bound Javg(τ), we
need leverage the fact that neurons far from ±w∗ are dispersed. By averaging over the “level set” of neurons
with αs(w) = α (where αt(w) := |w∗T ξt(w)|) we have

sup
w′,v∈Sd−1

Ew:|αs(w)|=α∥H⊥
s (w,w′)v∥ ≤ max

(
d−1/2, α

)k−1
.

Plugging this in for t ≤ T , along with the bound ∥J⊥
t,s∥ ≤

(
|αt|
|αs|

)k−1
from above, yields

Javg(τ) ≤ Ew

(
|αt(w)|
|αs(w)|

)k−1

max
(√

d
−1

, αs(w)
)k−1

1(|αt(w)| ≤ 1− τ)

⪅ Ew|αt(w)|k−11(|αt(w)| ≤ 1− τ),

Bounding this final term results from the observation the particles escape the saddle at roughly uniform time
in the interval [0, T ] (see Figure 2(right) and Proposition 49).

5 Conclusion and Discussion

We have studied propagation-of-chaos in the context of two-layer neural network training. By leveraging
several key geometric assumptions of the optimization landscape, we have established non-asymptotic guar-
antees of finite-width dynamics with polynomial dependency in all relevant parameters. At the heart of
our technical contributions is a tailored potential function that balances the intricate interactions that arise
between particle fluctuations around their idealized mean-field evolution. In essence, our assumptions ex-
ploit a form of self-concordance in the instantaneous potentials, as well as symmetries in the minimizing
mean-field measure. While these assumptions rule out generic interaction particle systems, they crucially
capture several problems of interest, such as planted models including single-index models. An enticing fu-
ture direction is remove the local strong convexity assumptions to extend to the case when ρ∗ is a manifold;
among other settings, this captures the case of learning a misspecified SIM. Another interesting question
is how to go beyond the Monte-Carlo scale of fluctuations, which is known to hold asymptotically under
certain conditions [CRBVE20, Theorem 3.5].

Remark 3 (Spherical Constraint). We remark that when the weights of the neural network are not con-
strained to the sphere, propagation of chaos fails even in simple settings: to see this, consider the case
of learning a SIM with information exponent k > 2. With polynomial width, we require the standard
T ≈ d(k−2)/2 time. However, with infinite neurons, only a o(1) fraction of neurons are required to learn the
feature since they can become a disproportionate mass of the network, so we can achieve T = d(k−1)/(k+2)

convergence time, by leveraging only the neurons with initial alignment ≥ d
−2
k+2 .
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A Full Statement of Assumptions and Remarks

Let V = span(supp(ρ∗)) and let U be the space orthogonal to V in Rd. Let

Cρ∗ := min
(
|supp(ρ∗)|,dim(V )degree(σ)

)
.

Assumption 4 (Local Strong Convexity (Full Version of Assumption 3)). We have (CLSC, τ) locally strongly
convex up to time T , meaning that for any t ≤ T , for any w with ξt(w) ∈ Bτ , we have

D⊥
t (w) ⪯ −CLSCP

⊥
ξt(w)

√
Ex(fρMF

t
(x)− f∗(x))2.

Further, the strong convexity is structured, meaning there exist values c1t , c
2
t ≥ c such that for any w with

ξt(w) ∈ Bτ , we have

∥c1tV V TP⊥
ξ∞(w)V V T + c2tUUT −D⊥

t (w)∥ ≤

CLSC

√
Ex(fρMF

t
(x)− f∗(x))2

2
√

Cρ∗
+ Cregτ

.

Assumption 5 (Symmetries of ρ∗). The automorphism group G of a problem (ρ∗,Dx, ρ0) is the group of
rotations g on Sd−1 where for any A ⊂ Sd−1:

Pρ∗ [A] = Pρ∗ [g(A)] PD[A] = PDx [g(A)] Pρ0 [A] = Pρ0 [g(A)]

We assume:

I1 supp(ρ∗) is transitive under G, that is, for any w∗, w∗′ ∈ supp(ρ∗), there exists g ∈ G such that
g(w∗) = w∗′. Further, Pw∼ρ0 [{∥w − w∗∥ = ∥w − w∗′∥∃w∗, w∗′ ∈ supp(ρ∗)}] = 0.

I2 Let V = span(supp(ρ∗)) and let U be the space orthogonal to V in Rd. Then the distribution Dx on
covariates x factorizes over U and V , that is Dx = DU ⊗ DV , where DU is a distribution on V and
DU is a distribution on U . Further, ExU∼DU

x = 0, and ExU∼DU
xxT = UUT .

Remark 4 (Dependence on Cρ∗ , and structured assumption.).

Remark 5 (The structured condition in Assumption 4).

Remark 6 (Symmetry Assumption).

B Proofs of Lemmas from Basic Setup

B.1 Notation.

Throughout this section, we will use the following notation, which builds upon the notation in our setup
from the main body.

F (w) := Ex∼Dxf
∗(x)σ(wTx)

F ′(w) := (I − wwT )∇wF (w)

and

K(w,w′) := Ex∼Dxσ(w
′Tx)σ(wTx)

K ′(w,w′) := (I − wwT )∇wK(w,w′).

17



In additional the interaction Hessian H⊥
t introduced in the introduction, we also define a versions without

the orthogonal projection, that is:

Ht(w,w
′) := K ′(ξt(w), ξt(w

′))

H⊥
t (w,w′) = Ht(w,w

′)(I − ξt(w
′)ξt(w

′))

We also define the empirical local Hessian D̄t (closely related to D⊥
t ), where the expectation is taken over

ρ̄mt instead of ρMF
t :

D̄t(w) :=
d

dξt(w)
V (ξt(w), ρ̄

m
t ) = ∇ξt(w)F

′(ξt(w))− Ew′∼ρ̄mt
∇ξt(w)K

′(ξt(w), w
′).

D⊥
t (w) =

d

dξt(w)
V (ξt(w), ρ

MF
t ) = ∇ξt(w)F

′(ξt(w))− Ew′∼ρMF
t
∇ξt(w)K

′(ξt(w), w
′).

B.2 Proof of Lemma 5

We being with a basic lemma which uses the regularity of σ to bound the smoothness of various problem
parameters.

Lemma 14. Assume Assumption R1 holds. There exists a constant Creg = OCreg(1) such that the following
holds for any w and w′ with norm at most 1.

S1
∥∥ d
dwK

′(w,w′)
∥∥ ≤ Creg and

∥∥ d
dwF

′(w)
∥∥ ≤ Creg

S2
∥∥∥ d2

dw′2K
′(w,w′)

∥∥∥ ≤ Creg

S3
∥∥∥ d2

dw2K
′(w,w′)

∥∥∥ ≤ Creg

S4
∥∥ d
dw′

d
dwK

′(w,w′)
∥∥ ≤ Creg

S5
∥∥∥ d2

dw2F
′(w)

∥∥∥
op

≤ Creg

S6 For any distribution ρ ∈ ∆(Sd−1), we have
∥∥∥ d2

dw2V (w, ρ)
∥∥∥
op

≤ Creg

S7 Ex∼Dx

[
Lip(σ(⟨·, x⟩))2

]
≤ Creg

Proof. [Proof of Lemma 14] These are straightforward to check from the definitions. First note that the
operator norm of the first and second derivatives of I − wwT is at most 2. Thus for any function G(w), by
chain rule, we have ∥∥∥∥ d

dw
(I − wwT )G(w)

∥∥∥∥ ≤
∥∥∥∥ d

dw
G(w)

∥∥∥∥+ 2∥G(w)∥∥∥∥∥ d2

dw2
(I − wwT )G(w)

∥∥∥∥ ≤ 3

∥∥∥∥ d2

dw2
G(w)

∥∥∥∥+ 8

∥∥∥∥ d

dw
G(w)

∥∥∥∥.
So to prove the lemma, it suffices to bound (over all w,w′ ∈ Sd−1):

∥∇wF (w)∥,
∥∥∥∥ d2

dw2
F (w)

∥∥∥∥,∥∥∥∥ d3

dw3
F (w)

∥∥∥∥,
18



and∥∥∇wK(w,w′)
∥∥, ∥∥∥∥ d2

dw2
K(w,w′)

∥∥∥∥,∥∥∥∥ d3

dw3
K(w,w′)

∥∥∥∥, ∥∥∥∥ d2

dwdw′∇wK(w,w′)

∥∥∥∥,∥∥∥∥ d3

dw2dw′∇wK(w,w′)

∥∥∥∥
As an example, for S2, we have∥∥∥∥ d2

dw′2K
′(w,w′)

∥∥∥∥
op

≤ sup
v2,v2,v3∈Sd−1

Exσ(w
Tx)σ′′′(w′Tx)vT1 (I − wwT )x(vT2 x)(v

T
3 x)

≤ sup
z,z′∈Bd

2

(
Ex|σ(zTx)|5

)1/5(Ex|σ′′′(z′Tx)|5
)1/5

sup
v∈Sd−1

(
Ex|(vTx)|5

)3/5
≤ Creg/11,

where here the second inequality holds by Holder’s inequality, and the final inequality by Assumption R1.
For S3, the argument is the same as the previous one, except we use the product rule to account for the
derivatives of (I − wwT ), which have operator norm at most 1.

For the rest of the terms involving derivatives — up to third order — of K, the argument is near iden-
titcal, following from Holder’s inequality and Assumption R1. Thus each of these terms about bounded by
Creg/11.

For the terms involving F , as an example, lets expand the the thrid order term. We have∥∥∥∥ d3

dw3
F (w)

∥∥∥∥ ≤ sup
v1,v2,v3∈Sd−1

Ex|σ(3)(wTx)(vT1 x)(v
T
2 x)(v

T
3 x)f

∗(x)|

≤ sup
z,z′∈Bd

2

(
Ex|σ(3)(zTx)|5

)1/5
sup

v∈Sd−1

(
Ex|(vTx)|5

)3/5(Ex(f
∗(x))5

)1/5
≤ Creg/11.

It follows that all the terms in the lemma are bounded by 11
(
Creg/11

)
= Creg.

We also prove Lemma 1 here, which we restate for the reader’s convenience.

Lemma 15. With high probability over the draw ρm0 , we have

Ex(fρMF
t
(x)− fρmt (x))

2 ≤ 2Creg(Ei∥∆t(i)∥)2 +
2 log(m)

m
.

Proof. [Proof of Lemma 1] Given coupling π ∈ Π(ρMF
t , ρmt ), we may write

fρMF
t
(x)− fρmt (x) = Ew,w′∼π[σ(x

⊤w)− σ(x⊤w′)].

Jensen’s inequality on the square yields

Ex[(fρMF
t
(x)− fρmt (x))

2] ≤ Ew,w′∼πEx[(σ(x
⊤w)− σ(x⊤w′))2].

We proceed to control the inner expectation via Taylor expansion,

Ex[(σ(x
⊤w)− σ(x⊤w′))2] ≤ Ex

[
((w − w′)⊤x)2

∫ 1

0
(σ′(tw + (1− t)w′)⊤x)2dt

]
≤ C∥w − w′∥2,

for some constant C > 0, where the last inequality follows from Assumption R1 and Cauchy-Schwarz.
Now due to the spherical constraint, Ew,w′∼π∥w−w′∥2 ≤ 4Ew,w′∼π∥w−w′∥, and thus taking an infimum
over coupling yields

Ez[(fρMF
t
(x)− fρmt (x))

2] ≤ C ·W1(ρ
MF
t , ρmt ).
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We conclude the proof by Lemma 14.

Finally, we prove Lemma 5, which we restate here.

Lemma 16 (Parameter-Space Error Dynamics). Suppose Assumption 1 holds. With high probability, for all
t ≤ T and i ∈ [m],

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i,

where ∥ϵt,i∥ ≤ 2ϵm + ϵn + 2Creg
(
∥∆t(i)∥2 + Ej∥∆t(j)∥2

)
.

Proof. [Proof of Lemma 5] We first decompose d
dt∆t(i) into four terms:

d

dt
∆t(i) = V (ξt(wi), ρ

MF
t )− V (ξ̂t(wi), ρ

m
t )

=
(
V (ξt(wi), ρ

MF
t )− V (ξt(wi), ρ̄

m
t )
)
+ (V (ξt(wi), ρ̄

m
t )− V (ξt(wi), ρ

m
t ))

+
(
V (ξt(wi), ρ

m
t )− V (ξ̂t(wi), ρ

m
t )
)
+
(
V (ξt(wi), ρ

m
t )− VD̂(ξ̂t(wi), ρ

m
t )
)
.

By Lemma 17 and Lemma 21, we can bound the first and fourth terms respectively with high probability:

∥V (ξt(wi), ρ
MF
t )− V (ξt(wi), ρ̄

m
t )∥2 ≤ ϵm. (B.1)

V (ξt(wi), ρ
m
t )− VD̂(ξ̂t(wi), ρ

m
t ) ≤ ϵn.

For the second term, we have

V (ξt(wi), ρ̄
m
t )− V (ξt(wi), ρ

m
t ) = −F ′(ξt(wi)) + Ew′∼ρ̄mt

K ′(ξt(wi), w
′)

+ F ′(ξt(wi))− Ew′∼ρmt
K ′(ξt(wi), w

′)

= −Ej

(
K ′(ξt(wi), ξt(wj))−K ′(ξt(wi), ξt(wj) + ∆t(j))

)
= Ej∼[m](Ht(i, j)∆t(j) + vj),

where ∥vj∥ ≤ Creg∥∆t(j)∥2. Indeed we can plug Lemma 14 S2 into the Lagrange error bound

∥K ′(w,w′)−K ′(w,w′ +∆)− d

dw′K
′(w,w′)∆∥ ≤ ∥∆∥2 sup

w′:∥w′∥≤1

∥∥∥∥ d2

dw′2K
′(w,w′)

∥∥∥∥.
Now note that for any j, since both ξt(wj) and w

(j)
t are on Sd−1, we have that

|⟨ξt(wj)∆t(j)⟩| =
1

2
∥∆t(j)∥2, (B.2)

and so by S1,

Ht(i, j)∆t(j) = H⊥
t (i, j)∆t(j) + v′

j

where ∥v′
j∥2 ≤ 1

2Creg∥∆t(j)∥2 Summarizing, we have that

V (ξt(wi), ρ̄
m
t )− V (ξt(wi), ρ

m
t ) = Ej∼[m]

(
H⊥

t (i, j)∆t(j) +
3

2
vj

)
. (B.3)
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Finally for the third term, we have

V (ξt(wi), ρ
m
t )− V (ξ̂t(wi), ρ

m
t ) = − d

dw
V (w, ρmt )|w=ξt(wi)∆t(i) + v,

where by S6,

∥v∥ ≤ ∥∆t(i)∥2
∥∥∥∥ d2

dw2
V (w, ρmt )

∥∥∥∥
op

≤ Creg∥∆t(i)∥2

Recall that we have defined

D̄t(w) :=
d

dξt(w)
V (ξt(w), ρ̄

m
t ) = ∇ξt(w)F

′(ξt(w))− Ew′∼ρ̄mt
∇ξt(w)K

′(ξt(w), w
′).

Now

d

dξt(wi)
V (ξt(wi), ρ

m
t ) =

d

dξt(wi)
F ′(ξt(wi))− Ej

d

dξt(wi)
K ′(ξt(wi), ξ̂t(wj))

=
d

dξt(wi)
F ′(ξt(wi))− Ej

d

dξt(wi)
(K ′(ξt(wi), ξt(wj)) +Mj)

= D̄t(i)− EjMj .

where by S4,

∥Mj∥op ≤ ∥∆t(j)∥ sup
w,w′

∥∥∥∥ d

dw

d

dw′K
′(w,w′)

∥∥∥∥
op

≤ Creg∥∆t(j)∥.

Thus, additionally using the fact that we have conditioned on the fact that ∥Dt(i) − D̄t(i)∥ ≤ ϵm — and
thus ∥D⊥

t (i)− D̄⊥
t (i)∥ ≤ ϵm — and again using (B.2) and S1 to swap Dt(i)∆t(i) for D⊥

t (i)∆t(i) with an
error term of magnitude 0.5Creg∥∆t(i)∥2, we have that

V (ξt(wi), ρ
m
t )− V (ξ̂t(wi), ρ

m
t ) = D⊥

t (i)∆t(i) + v3, (B.4)

where ∥v3∥ ≤ Creg(1.5∥∆t(i)∥2 + ∥∆t(i)∥Ej∥∆t(j)∥) + ϵm∥∆t(i)∥.
Putting together Equations (B.1), (B.3), and (B.4), we have

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m],j ̸=iH
⊥
t (i, j)∆t(j) + ϵ,

where

∥ϵ∥ ≤ ϵn + ϵm(1 + ∥∆t(i)∥) + Creg
(
1.5∥∆t(i)∥2 + ∥∆t(i)∥Ej∥∆t(j)∥+ 1.5Ej∥∆j∥2

)
≤ ϵn + ϵm(1 + ∥∆t(i)∥) + 2Creg

(
∥∆t(i)∥2 + Ej∥∆j∥2

)
.
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C Proof of Concentration Lemmas

Lemma 17 (Uniformly Bounded Sampling Error). With probability 1− o(1) over the initialization, for all

t ≤ T and i ∈ [m], the following holds with ϵm = d3/2 log(Tm)√
m

.

∥V (ξt(wi), ρ
MF
t )− V (ξt(wi), ρ̄

m
t )∥ ≤ ϵm.

∥Dt(i)− D̄t(i)∥ ≤ ϵm.

Proof. [Proof of Lemma 17] Fix t ≤ T and w ∈ Sd−1 By Equation (2.1), we have that

V (w, ρMF
t )− V (w, ρ̄mt ) := (I − wwT )

(
Ew′∼ρMF

t
∇wK(w,w′)− Ew′∼ρ̄mt

∇wK(w,w′)
)

Now

Ew0∼ρ0t
Ew′∼ρMF

t
∇wK(w,w′) = Ew′∼ρMF

t
Ew′∼ρMF

t
∇wK(w,w′),

and by Assumption R1, for any w′, w ∈ Sd−1, ∥∇wK(w,w′)∥∞ ≤ Creg. So by Hoeffding’s inequality,
taking a union bound over all d coordinates in the random vector, we have

P
[
∥V (w, ρMF

t )− V (w, ρ̄mt )∥ ≥ ϵm
2

]
≤ 2d exp

(
−Ω(mϵ2m)

4dC2
reg

)
Now we need to take a union bound over all w ∈ Sd−1, and t ≤ T . Create an net over Sd−1 of maximum

distance ϵm
4Creg

between any point and the net: this has size O

((
4Creg
ϵm

)d)
. Similarly make a net over [0, T ]

of spacing ϵm
4Creg

; this has size 4CregT
ϵm

. By a union bound, with probability at least

1− 2d exp

(
−Ω(mϵ2m)

4dC2
reg

)
O

((
4Creg

ϵm

)d
)
4CregT

ϵm
,

for any w in the net and any t in the net, we have

∥V (w, ρMF
t )− V (w, ρ̄mt )∥ ≤ ϵm

3Creg
.

For any w, u ∈ Sd−1, for any ρ, by Lemma 14, we have

V (w, ρ)− V (u, ρ) ≤ Creg∥w − u∥.

Similarly, by Lemma 14, for any s, t ≤ T , and any w0, we have

∥ξt(w0)− ξs(w0)∥ ≤ Creg|t− s|.

Thus, for any w ∈ Sd−1 and t ≤ T , there exist u and s in the respective nets of distance at most ϵm
3Creg

. By

a standard triangle inequality argument, we attain that with the probability in Equation C, for all w ∈ Sd−1

and t ≤ T , we have

∥V (w, ρMF
t )− V (w, ρ̄mt )∥ ≤ ϵm.

One can check that since ϵm ≥ d log(mT )√
m

, this probability is 1− o(1).
The argument for proving concentration for D̄t(w) uniformly over w and t is identical. The only change

is that since D̄t(w) is a d × d matrix, we need to take a union bound over d2 indices in this matrix, so we
require that ϵm ≥ d3/2 log(mT )√

m
.
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Lemma 18 (Concentration of Jt,s). With high probability over the random choice of ρ̄m0 , for all s ≤ t ≤ T ,
all vectors v ∈ Sd−1, and all j ∈ [m], we have∣∣∣Ei∥Jt,s(i)H⊥

s (i, j)v∥1(ξt(wi) ∈ S)− Ew∼ρ0∥Jt,s(w)H⊥
s (w, w̄0(j))v∥1(ξt(w) ∈ S)

∣∣∣ ≤ ϵm,

for ϵm =
√
dJmax log(mT )√

m
.

Proof. [Proof of Lemma 18] Fix w′, v ∈ Sd−1 and s ≤ t ≤ T . Let

X(w) := ∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) ∈ S).

To prove the desired bound for j we must bound
∣∣Ew∼ρm0

X(w)− Ew∼ρ0X(w)
∣∣ with high probability for

w′ = w̄0(j).
By Lemma 14, we have |X(w)| ≤ CregJmax. By Hoeffding’s inequality, we have

P
[∣∣Ew∼ρm0

X(w)− Ew∼ρ0X(w)
∣∣ ≥ ϵm

2

]
≤ 2 exp

(
Ω(mϵ2m)

4C2
regJ

2
max

)
.

Now we need to build an ϵ-net of scale ϵm
6Creg

over s, t ∈ [0, T ], w′ ∈ Sd−1, and v ∈ Sd−1. The product of
the size of these nets is (

6TCreg

ϵm

)2

O

((
6Creg

ϵm

)2d
)

Checking Lipschitzness of the various quantities as per the proof of Lemma 17, and then using a union
bound gives the desired result with high probability whenever ϵm ≥

√
dJmax log(mT )√

m
.

Lemma 19. Fix a set S ⊆ Sd−1, any function v : Sd−1 → Bd
2 . With probability 1−o(1/d) over the random

choice of ρm0 , for any w ∈ Sd−1, with ϵ19m = d log(md)√
m

we have

∥Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ S)− Ew′∼ρm0
H⊥

∞(w,w′)v(w′)1(ξt(w
′) ∈ S)∥ ≤ ∥v∥∞ϵ19m∣∣Pw′∼ρ0 [ξt(w

′) ∈ S]− Pw′∼ρm0
[ξt(w

′) ∈ S]
∣∣ ≤ ϵ19m .

Proof.
The second statement is immediate by a Chernoff bound. For the first statement, the proof is similar to

the other concentration lemmas. Fix w. Let

X(w′) := H⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ S)

Since ∥H⊥
∞(w,w′)∥ ⪯ CregI for all w,w′, we have the following bound:

By Hoeffding’s inequality (unioning over all coordinates of X(w′)), we have

P
[∥∥Ew∼ρm0

X(w′)− Ew∼ρ0X(w′)
∥∥ ≥ ϵ19m

2

]
≤ 2 exp

(
Ω(mϵ19m

2
)

4C2
regd

)
.

We need to build an ϵ-net of scale ϵ19m
4Creg

over w ∈ Sd−1 since by Lemma 14, X(w) is Creg-Lipschitz in

w. This net has size
((

O(Creg)
ϵm

)d)
. Thus with ϵ19m = d log(m)√

m
, we have that with high probability, for all

w ∈ Sd−1, the desired quantity is uniformly bounded.
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Lemma 20 (Averaging Lemma). Suppose Q is Cb-balanced, and the high probability event in Lemma 18
holds for S = Bτ . If Assumption 2 holds, then for any s ≤ t,

Ei∥Jt,s(i)ms(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(
ϵ18m + Javg(τ)

)
ΦQ(t).

In particular,

Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(
ϵ18m + Javg(τ)

)
ΦQ(t).

Proof. Recall that

mt(i) = EjH
⊥
t (i, j)∆t(j).

Thus

∥Jt,s(i)ms(i)∥ ≤ Ej∥Jt,s(i)H⊥
s (i, j)∆t(j)∥.

Now for any vector v ∈ Rd, by Lemma 18 and Assumption 2, we have that

Ei∥Jt,s(i)H⊥
s (i, j)v∥ ≤ ϵ18m∥v∥+ Javg(τ)∥v∥,

and so

Ei∥Jt,s(i)ms(i)∥1(ξt(wi) /∈ Bτ ) ≤
(
ϵ18m + Javg(τ)

)
Ei∥∆t(i)∥ ≤

(
ϵ18m + Javg(τ)

)
ΦQ(t).

The second line of the lemma holds by plugging in s = t. This concludes the lemma.

Lemma 21. Suppose the empirical data distribution D̂ =
∑n

i=1 δ(xi,yi) satisfies Assumption R2. Then with
high probability over the draw of D̂, we have uniformly over all w ∈ Sd−1, and all ρ ∈ ∆(Sd−1), we have

∥VD̂(w, ρ)− V (w, ρ)∥ ≤ ϵn,

for ϵn =
√
d log2(n)√

n
.

Proof. The velocity is linear in ρ, so it suffices to prove that (additionally) uniformly over w′, we have

∥VD̂(w, δw′)− V (w, δw′)∥ ≤ ϵn.

We expand

VD̂(w, δw′) = (I − wwT )Ex∼D̂(y − σ(w′Tx))σ′(wTx)x;

it suffices to prove that with high probability, uniformly over w′ ∈ Sd−1, and v ∈ Sd−1, we have∣∣Ex∼D̂σ(w
′Tx)σ′(wTx)xT v − Ex∼Dσ(w

′Tx)σ′(wTx)xT v
∣∣ ≤ ϵn∣∣Ex∼D̂yσ

′(wTx)xT v − Ex∼Dyσ
′(wTx)xT v

∣∣ ≤ ϵn

For a fixed w,w′, v, since by Assumption R1, all the terms in side the expectations are Creg-subgaussian,
this holds with probability exp(−nϵ2n/2C

2
reg). We now take three epsilon-nets over Sd−1 (for w, w′ and v

respectively) at the scale ϵn
6Creg

. Note that Lemma 14 implies these quantities are Creg-Lipschitz with regard

to w, w′ or v. Since the epsilon nets have size
(
O
(
Creg
ϵn

))d
, with ϵn =

√
d log2(n)√

n
, we see that

exp(−nϵ2n/2C
2
reg)

(
O

(
Creg

ϵn

))3d

= o(1).
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D Proof of Results Relating to Potential Function Analysis

D.1 Notation

For g, h : X → Rd, and a set S ⊆ Sd−1 we will denote the dot product and conditional dot products

⟨g, h⟩ = Ew∼ρ0g(w)
Th(w).

⟨g, h⟩S = Ew∼ρ0g(w)
Th(w)1(w ∈ S).

For a kernel H : (Sd−1)2 → Rd×d, and two sets S, T ⊆ Sd−1, for g, h : Sd−1 → Rd, we use the notation

⟨g, h⟩S,TH := Ew,w′∼ρ0g(w)
TH(w,w′)h(w′)1(w ∈ S,w′ ∈ T ).

If S = T or S = T = Sd−1, we will abbreviate and use the notation ⟨g, h⟩SH or ⟨g, h⟩H respectively. If
the functions g, h are only defined on [m] (or respectively on supp(ρm0 )), then in all the inner products /
quadradic forms above, the default distribution should be taken to be Uniform([m]) (resp. ρm0 ) instead of
ρ0.

We will use ∇ΦQ(t) (resp. ∇Ω(t), ∇ϕv(t), ∇ΨQ(t).) to denote the map on [m] (resp. supp(ρm0 ))
which takes i (or wi) to m∇∆t(i)Φ(t). We have rescaled these derivative so that this term is on order 1, so
we can take inner products in our notation more easily.

For a set B ⊆ Sd−1, we will use the shorthand Bt := ξ−1
t (B) to denote the set of all w ∈ Sd−1 with

ξt(w) ∈ B, and B̄ to denote the complement of B in Sd−1.

D.2 Proof of Lemmas on the properties of the potential

D.2.1 Restricted Isometry and Related Group Theoretic Definitions and Lemmas

Definition 22. We say a problem (H,µ) has consistent restricted isometry (CRI ) with a set S if for any
eigenfunction v of (H,µ), (that is, where ⟨u, v⟩H = λv⟨u, v⟩ for all u : Sd−1 → Rd), we have that for all
w ∈ Sd−1, we have

Ew′∼µH(w,w′)v(w′)1(w′ ∈ S) = λvv(w)Pw′∼ρ0 [w
′ ∈ S].

In other words, for any u : Sd−1 → Rd,

⟨u, v⟩SH = λv⟨u, v⟩SPρ0 [S],

Definition 23. The automorphism group G of a problem (ρ∗,Dx, ρ0) is the set group of rotations g on Sd−1

where for any A ⊂ Sd−1:

Pρ∗ [A] = Pρ∗ [g(A)]

PD[A] = PDx [g(A)]

Pρ0 [A] = Pρ0 [g(A)]

We say that a problem (ρ∗,Dx, ρ0) is transitive if for any w∗, w∗′ ∈ supp(ρ∗), there exists some g in the
automorphism group G such that g(w∗) = w∗′.

Lemma 24. Suppose I1 holds. For any time t, for all g ∈ G in the automorphism group of (ρ∗, ρ0,Dx), we
have

A1 If ξt(w) ∈ A, then ξt(g(w)) ∈ g(A)
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A2 Almost surely over w ∼ ρ0, ξ∞(w) = argminw∗∈supp(ρ∗) ∥w−w∗∥. So a.s., for all A ⊂ Sd−1, g ∈ G,
if ξ∞(w) ∈ A, then ξ∞(g(w)) ∈ g(A). Further, ξ∞# ρ0 = ρ∗.

A3 g(Bτ ) = Bτ .

Proof. We will prove the first item by induction. It suffices to prove the following claim, because if the
velocity is symmetric, then ρMF

t will be symmetric.

Claim 25. Conditional on A1 holding up to time t, we have

d

dt
ξt(w) = V (w, ρMF

t ) = g−1(V (g(w), ρMF
t ))

Proof.

V (w, ρMF
t ) = −(I − wwT )∇wFD(w) + (I − wwT )∇wEw′∼ρMF

t
KD(w,w

′)

= −(I − wwT )Ex∼Dxf
∗(x)σ′(wTx)x+ (I − wwT )Ew′∼ρMF

t
Ex∼Dxσ(w

′Tx)σ′(wTx)x

Now

P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(w

′Tx)σ′(wTx)x

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(g(w

′)T g(x))σ′(g(w)T g(x))x

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(g(w

′)Tx)σ′(g(w)Tx)g−1(x)

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(w

′Tx)σ′(g(w)Tx)g−1(x)

= (g−1(x)− wwT g−1(x))Ew′∼ρMF
t
Ex∼Dxσ(w

′Tx)σ′(g(w)Tx)

= (g−1(x)− wg(w)Tx)Ew′∼ρMF
t
Ex∼Dxσ(w

′Tx)σ′(g(w)Tx)

= g−1(x− g(w)g(w)Tx)Ew′∼ρMF
t
Ex∼Dxσ(w

′Tx)σ′(g(w)Tx)

= g−1
(
P⊥
g(w)∇g(w)Ew′∼ρMF

t
KD(g(w), w

′)
)
.

Here (1) is because zT y = zTUTUy for any rotation U and any y, z ∈ Rd (2) is because Dx is invariant with
respect to G, (3) is because ρMF

t is invariant with respect to G (by induction), (5) again because of the same
reason as (1), and (4), (6) and (7) are simple algebraic operations. Similarly, we can show that

P⊥
w Ex∼Dxf

∗(x)σ′(wTx)x = Ex∼Dxf
∗(x)σ′(wTx)P⊥

w x

= Ex∼Dxf
∗(x)σ′(wTx)g−1(P⊥

g(w))g(x)

= Ex∼Dxf
∗(x)σ′(g(w)T g(x))g−1(P⊥

g(w)g(x))

= Ex∼DxEw∗∼ρ∗σ(w
∗Tx)σ′(g(w)T g(x))g−1(P⊥

g(w)g(x))

= Ex∼DxEw∗∼ρ∗σ(w
∗T g−1(x))σ′(g(w)Tx)g−1(P⊥

g(w)x)

= Ex∼DxEw∗∼ρ∗σ(g(w
∗)Tx)σ′(g(w)Tx)g−1(P⊥

g(w)x)

= Ex∼Dxf
∗(x)σ′(g(w)Tx)g−1(P⊥

g(w)x)

= g−1
(
P⊥
g(w)FD(g(w))

)
.

Putting these two computations together yields the desired conclusion,

V (w, ρMF
t ) = g−1(V (g(w), ρMF

t )).
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Next consider A2. Observe that if w is closest to some w∗, then it either is the case that ξt(w∗) is always
closest to w∗, or at some point there is a tie in the distances ξt(w∗) and ξt(w

∗′). By A1, such a tie would
imply however that ∥w − w∗∥ = ∥w − w∗′∥, which we have assumed in I1 is a measure 0 event. The rest
follows immediately from the transitivity of supp(ρ∗).

Finally for A3,

g(Bτ ) = {g(w) : w ∈ Bτ}
= {g(w) : min

w∗∈supp(w∗)
∥w − w∗∥ ≤ τ}

= {g(w) : min
w∗∈supp(w∗)

∥g(w)− g(w∗)∥ ≤ τ}

= {g(w) : min
w∗∈supp(w∗)

∥g(w)− w∗∥ ≤ τ}

= {w : min
w∗∈supp(w∗)

∥w − w∗∥ ≤ τ}

= Bτ .

Lemma 26. Suppose (ρ∗,Dx, ρ0) is transitive. Then (H⊥
∞, ρ0) has consistent isometry with Bt

τ = ξ−1
t (Bτ )

for any t ≤ T , τ ≥ 0.

Proof. We will use a series of small claims.

Claim 27. Fix any t and τ . Let ρ̃ be the distribution of ξ∞(w) with w ∼ ρ0 conditional on ξt(w) ∈ Bτ .
Then

ρ̃ ∼ ξ∞#ρ0.

Proof. We will show that both ρ̃ and ξ∞#ρ0 are uniform on the support of ρ∗. Fix w∗, w∗′ ∈ supp(ρ∗), and
let g ∈ G be the element in the automorphism group of (ρ∗, ρ0,Dx) which takes w∗ to w∗′. Now

ρ̃(w∗) = Pw∼ρ0 [ξ
∞(w) = w∗ ∧ ξt(w) ∈ Bτ ]

= Pw∼ρ0 [ξ
∞(g(w)) = g(w∗) ∧ ξt(g(w)) ∈ g(Bτ )]

= Pw∼ρ0 [ξ
∞(g(w)) = w∗′ ∧ ξt(g(w)) ∈ Bτ ]

= Pw∼ρ0 [ξ
∞(w) = w∗′ ∧ ξt(w) ∈ Bτ ]

= ρ̃(w∗′).

Here (1) is by definition, (2) is by A1, and A2, (3) is by choice of g and A3, and (4) is by the symmetry of
ρ0 with respect to G. It follows that ρ̃ is uniform on the support of ρ∗. Now lets check that ξ∞#ρ0 is also
uniform on supp(ρ∗). We have by similar use of A1 and A2 that

ξ∞#ρ0(w
∗) = Pw∼ρ0 [ξ

∞(w) = w∗ ∧ ∥ξ∞(w), w∗∥ ≤ ∥ξ∞(w), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(g(w)) = g(w∗) ∧ ∥ξ∞(g(w)), g(w∗)∥ ≤ ∥ξ∞(g(w)), g(w̃∗)∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(g(w)) = w∗′ ∧ ∥ξ∞(g(w)), w∗′∥ ≤ ∥ξ∞(g(w)), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(w) = w∗′ ∧ ∥ξ∞(w), w∗′∥ ≤ ∥ξ∞(w), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= ξ∞#ρ0(w
∗′).
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Claim 28. Let v be an eigenfunction of (H⊥
∞, ρ0), that is ⟨u, v⟩H⊥

∞
= λv⟨u, v⟩ for all u : Sd−1 → Rd. Then

v(w) = v′(ξ∞(w)) for some function v′ : supp(ρMF
∞ ) → Sd−1.

Proof. For all w, we have

λvv(w) = Ew′∼ρ0H
⊥
∞(w,w′)v(w′) = Ew′∼ρ0K

′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′)).

This value only depends on w through ξ∞(w).
We will now use the previous two claims to show consistency. Fix t and τ , and let v be some eigenfunction
of (H⊥

∞, ρ0). Let v′ : supp(ρMF
∞ ) → Sd−1 be the function guaranteed by the previous claim with v(w) =

v′(ξ∞(w)). Then for all w,

Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(w′ ∈ ξ−1

t (Bτ ))

= Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ Bτ )

= Ew′∼ρ0K
′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′))1(ξt(w

′) ∈ Bτ )

= Pρ0 [ξ
−1
t (Bτ )]Ew′∼ρ0K

′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′))

= Pρ0 [ξ
−1
t (Bτ )]Ew∼ρ0H

⊥
∞(w,w′)v(w′)

= Pρ0 [ξ
−1
t (Bτ )]λvv(w),

as desired. Here the third equality follows from Claim 27.

D.2.2 Construction of the potential.

Remark 7. We can verify that the action H⊥
∞ (from Section 4.1) is well-defined in Z since ∥H⊥

∞v∥Z ≤
supw,w′ ∥H⊥

∞(w,w′)∥∥v∥Z ). We verify that H⊥
∞ is self-adjoint in Z , ie ⟨v,H⊥

∞v′⟩Z = ⟨H⊥
∞v, v′⟩Z . We

also verify that the span of H⊥
∞ is finite-dimensional, thanks to the atomic nature of ρ∗. Indeed, for each

w∗ ∈ supp(ρ∗) and l ∈ {1, d}, let χw∗,l ∈ Z be the indicator χw∗(w) = el1(ξ
∞(w) = w∗), where el is

the l-th canonical basis vector. We verify that if v ⊥ W := span(χw∗,l; w
∗ ∈ supp(ρ∗), l ∈ {1, d}), then

H⊥
∞v = 0.

The following lemma implies Lemma 9. Recall that Cρ∗ = min
(
|supp(ρ∗)|,dim(ρ∗)2 degree(σ)+1

)
.

Lemma 29. Suppose Assumption I2 holds. Then for any µ, there exists an balanced spectral distribution Q
of (H⊥

∞, µ) which is 2Cρ∗
minw∗∈supp(ρ∗) Pξ∞

#
µ[w

∗] balanced. If I1 additionally holds, then there exists an balanced

spectral distribution Q of (H⊥
∞, ρ0) which is 2Cρ∗-balanced.

Proof. [Proof of Lemma 29 ] We will show that the linear operator induced by (H⊥
∞, µ) has an WED Q

which is balanced for some constant depending on ρ∗.

Claim 30. We can write

H⊥
∞(w,w′) = M1(ξ

∞(w), ξ∞(w′))UUT +M2(ξ
∞(w), ξ∞(w′)),

where for w∗, w∗′ ∈ supp(ρ∗),

M1(w
∗, w∗′) := Ex∼DV

σ′(xTw∗)σ′(xTw∗′)

M2(w
∗, w∗′) := Ex∼DV

σ′(xTw∗)σ′(xTw∗′)P⊥
w∗xxTP⊥

w∗′ .

Further, both M1 and M2 have rank at most Cρ∗ = min
(
|supp(ρ∗)|, dim(ρ∗)2 degree(σ)+1

)
.

28



Proof. Let V be the orthonormal basis spanning supp(ρ∗), and let U be any orthonormal basis of Rd \
span(V ). Recall that Assumption I2 guarantees that the distribution of x, Dx, can be factorized as DU⊗DV ,
where span(DU ) ∈ span(U), span(DV ) ∈ span(V ), Ex∼DU

xxT = UUT , and Ex∼DU
x = 0.

Recall that H⊥
∞(w,w′) = Ex∼Dxσ

′(xT ξ∞(w))σ′(xT ξ∞(w′))xxT . Observe that for u, v ∈ Span(U),
we have

uTH⊥
∞(w,w′)v = Ex∼Dxσ

′(xT ξ∞(w))σ′(xT ξ∞(w′))(uTx)(vTx)

= Ex∼DV
σ′(xT ξ∞(w))σ′(xT ξ∞(w′))Ex∼DU

uTxxT v

= Ex∼DV
σ′(xT ξ∞(w))σ′(xT ξ∞(w′))Ex∼DU

uT v.

If u ∈ Span(U), v ∈ Span(V ), then it is easy to check by the fact that Ex∼DU
x = 0 that

uTH⊥
∞(w,w′)v = ExV ∼Dσ

′(xTV ξ
∞(w))σ′(xTV ξ

∞(w′))(vTxV )ExU∼DU
(uTxU ) = 0.

For w∗, w∗′ ∈ supp(ρ∗), let

M1(w
∗, w∗′) := Ex∼DV

σ′(xTw∗)σ′(xTw∗′)

M2(w
∗, w∗′) := Ex∼DV

σ′(xTw∗)σ′(xTw∗′)P⊥
w∗xxTP⊥

w∗′

such that by the above computations,

H⊥
∞(w,w′) = M1(ξ

∞(w), ξ∞(w′))UUT +M2(ξ
∞(w), ξ∞(w′)).

The statement about the rank follows from the observations that (1) both M1 and M2 are defined on a
space of size at most |supp(ρ∗)|, and (2) Alternatively, we can replace the expectation of x ∼ DV with
the expectation over some x ∼ D′

V , where D′
V is supported on at most dim(V )2 degree(σ)+1 points, and all

the moments of D′
V up to the degree(σ)th degree match those of DV (as this requires matching at most∑2 degree(σ)

j=0 dim(V )j ≤ dim(V )2 degree(σ)+1 terms.)

We will construct Q using the eigenfunctions of each of these two parts. Let F ⊂ L2(supp(ρ∗), (ξ∞)#µ,Rd)
be an orthonormal basis of eigenfunctions of the linear operator (M2, (ξ

∞)#µ), that is, we have∑
f∈F

λff(w
∗)f(w∗′)T = M2(w

∗, w∗′)

Ew∗′∼(ξ∞)#µM2(w
∗, w∗′)f(w∗′) = λff(w

∗),

Let Y ⊂ L2(supp(ρ∗), (ξ∞)#µ) be an orthonormal basis of eigenfunctions of the linear operator
(M1, (ξ

∞)#µ), that is, we have∑
y∈Y

λyy(w
∗)y(w∗′) = M1(w

∗, w∗′)

Ew∗′∼(ξ∞)#µM1(w
∗, w∗′)y(w∗′) = λyy(w

∗)

Let Λ = Λ1 ∪ Λ2, where

Λ2 := {λf : f ∈ F} Λ1 = {λy : y ∈ Y}.

The following claim is immediate to check from the decomposition of H⊥
∞ in Claim 30.
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Claim 31. Let Pλ be the projector onto the eigenspace of H⊥
∞ with eigenvalue λ. Then Pλ = P λ, where

Pλ(w,w
′) :=

∑
f∈F

f(ξ∞(w))f(ξ∞(w′)T1(λf = λ) + UUT
∑
y∈Y

y(ξ∞(w))y(ξ∞(w′)1(λy = λ)

=
∑
v∈Bλ

v(w)v(w′)T ,

where

Bλ := {vf : λf = λ}f∈F ∪ {vy,i : λy = λ}y∈Y ,

and

vf (w) := f(ξ∞(w));

vy,i(w) := y(ξ∞(w))Ui.

It remains to check how balanced this spectral decomposition is. Let p := minw∗∈supp(ρ∗) Pξ∞# µ[w
∗],

and observe that maxw,f∈F ,y∈Y(∥f(w)∥, |y(w)|) ≤ 1√
p , since the eigenfunctions are orthonormal. Fix

λ ∈ Λ. We have

∑
v∈Bλ

v(w)v(w)T =
∑
f∈F

vf (w)(vf (w))T1(λf = λ) +
∑
y∈Y

dim(U)∑
i=1

vy,i(w)vy,i(w)1(λy = λ)

=
∑
f∈F

f(ξ∞(w))(f(ξ∞(w)))T1(λf = λ) +
∑
y∈Y

y(ξ∞(w))y(ξ∞(w))UUT1(λy = λ)

⪯ I

p

∑
f∈F

1(λf = λ) +
∑
y∈Y

1(λy = λ)

.

Thus letting

η2λ :=
1

p

∑
f∈F

1(λf = λ) +
∑
y∈Y

1(λy = λ)

,

by Claim 30, we have that∑
λ∈Λ

η2λ =
|F|+ |Y|

p
≤ rank(M1) + rank(M2)

p
≤ 2Cρ∗

p
.

Thus Q = {(Bλ, ηλ)}λ∈Λ is 2Cρ∗
p -balanced. This proves the first statement in the lemma.

If (ρ∗, ρ0,Dx) is transitive (as per Definition 23), then we can get rid of the denominator and show that
almost surely over w ∼ ρ0,

∑
v∈Bλ

v(w)v(w)⊤ ⪯ I

∑
f∈F

1(λf = λ) +
∑
y∈Y

1(λy = λ)


This suffices to prove the lemma.
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To do this, let G be the set of automorphisms of (ρ∗, ρ0,Dx) as per Definition 23. For h ∈ L2(Sd−1, ρ0,Rd),
define g(h) by

g(h)(w) := g−1(f(g(w))).

For convenience, for y ∈ Y , we will abuse notation and define

g(y)(w) := y(g(w)).

Claim 32 (G-invariance of Eigenspaces.). If f ∈ F is an eigenfunction of M2, then g(f) is an eigenfunction
of M2 with the same eigenvalue. Simlary, if y ∈ Y is an eigenfunction of M1, then g(y) is an eigenfunction
of M1 with the same eigenvalue.

Proof. We have

M2(g(f))(w
∗) = Ew∗′∼(ξ∞)#ρ0Ex∼DV

σ′(xTw∗)σ′(xTw∗′)P⊥
w∗xxTP⊥

w∗′g−1(f(g(w∗′)))

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(xTw∗)σ′(xTw∗′)g−1

(
P⊥
g(w∗)g(x)

)
xT g−1

(
P⊥
g(w∗′)f(g(w

∗′))
)

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(g(x)T g(w∗))σ′(g(x)T g(w∗′))g−1

(
P⊥
g(w∗)g(x)

)
g(x)TP⊥

g(w∗′)f(g(w
∗′))

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(xT g(w∗))σ′(xTw∗′)g−1

(
P⊥
g(w∗)x

)
xTP⊥

w∗′f(w∗′)

= g−1
(
Ew∗′∼(ξ∞)#ρ0Ex∼DV

σ′(xT g(w∗))σ′(xTw∗′)P⊥
g(w∗)xx

TP⊥
w∗′f(w∗′)

)
= g−1(M2f(g(w

∗)))

= g−1(λff(g(w
∗)))

= λfg(f)(w
∗)

Here in the second line with used the fact that for any w and z, we have

(I − wwT )z = z − wwT z = z − wg(w)T g(z) = g−1
(
(I − g(w)g(w)T )g(z)

)
If the third line, we just used that for z, z′ ∈ Rd, we have zT z′ = g(z)T g(z′). In the fourth line, we used the
symmetry of Dx and (ξ∞)#ρ0 with respect to G (see A2). The proof for that M1g(y)(w

∗) = λyg(y)(w
∗)

is similar (but simpler); we omit the computation.

Let µG the uniform measure over the group generated by the set of all gw∗,w∗′ ∈ G for w∗, w∗′ ∈
supp(ρ∗), where gw∗,w∗′(w∗) = w∗′. Observe that µG a left-invariant measure on G, that is, for any w∗ ∈
supp(ρ∗), we have that the distribution of g(w∗) is uniform on ρ∗ when g ∼ µG (that is, it equals ρ∗, since
ρ∗ is atomic). Also note that for g ∈ supp(µG) and v ∈ span(V ), we have that g(v) ∈ span(V ). Thus
for u ∈ span(U), we have g(u) ∈ span(U), and thus in particular, since g preserves dot products, and thus
orthonormality,

g−1(U)g−1(U)T = UUT . (D.1)

Claim 33. Let g ∈ supp(µG), and define g(Bλ) := {g(v)}v∈Bλ
. Then g(Bλ) is an orthonormal basis for

Pλ.

Proof. First we will check that almost surely over w, w′,∑
f∈F

λfg(v
f )(w)g(vf )(w′)T +

∑
y∈Y

λyg(v
y,i)(w)g(vy,i)(w′)T = H⊥

∞(w,w′). (D.2)
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Using the definition of g(f) and A2, almost surely over w,w′, we have for z, z′ ∈ Sd−1,

zT
∑
f∈F

λfg(v
f )(w)g(vf )(w′)T z′ = zT

∑
f∈F

λfg
−1(f(ξ∞(g(w))))g−1

(
f(ξ∞(g(w′)))T

)
z′ (D.3)

= zT
∑
f∈F

λfg
−1(f(g(ξ∞(w))))g−1

(
f(g(ξ∞(w′)))T

)
z′

=
∑
f∈F

λfg(z)
T f(g(ξ∞(w)))f(g(ξ∞(w′)))T g(z′)

= g(z)TM2(g(ξ
∞(w)), g(ξ∞(w′)))T g(z′)

= zTM2(ξ
∞(w), ξ∞(w′))T z′,

where here in the last line, we used the fact that

zTM2(w
∗, w∗′)T z′ = g(z)TM2(g(w

∗), g(w∗′))T g(z′)

for any g ∈ G, w∗, w∗′. This can verified from the definition of M2 and the fact that Dx is invariant with
respect to G.

We can perform a similar (much easier) calculation to show that∑
y∈Y

λyg(y)(ξ
∞(w))g(y)(ξ∞(w′)) = M1(ξ

∞(w), ξ∞(w′));

this arises from the fact that M1(w
∗, w∗′) = M1(g(w

∗), g(w∗′)) since Dx is invariant with respect to G. We
omit the details. Thus by (D.1),∑

y∈Y
λyg(v

y,i)(w)g(vy,i)(w′)T = M1(ξ
∞(w), ξ∞(w′))g−1(U)g−1(U)T (D.4)

= M1(ξ
∞(w), ξ∞(w′))UUT .

Employing (D.4) and (D.3) yields (D.2) almost surely as desired.
Now, to prove the claim, we use (1) the fact from Claim 32 guarantees that g(v) is an eigenfunction

with the same values as v, and (2) the fact that the set {g(v)}v∈Bλ
is orthonormal (since dot products are

preserved under rotations). These two facts guarantee that g(Bλ) is a basis for Pλ.

The following claim now suffices to prove the lemma.

Claim 34. For any w ∈ Sd−1, we have

∑
v∈Bλ

v(w)v(w)T ⪯ I

∑
f∈F

1(λf = λ) +
∑
y∈Y

1(λy = λ)

.

Proof. Fix any w ∈ Sd−1, and let w∗ = ξ∞(w). For z ∈ Rd, let πz ∈ L2(Sd−1, ρ0,Rd) be defined by
πz(w

′) = z1(ξ∞(w′) = w∗). Then since for v ∈ Bλ, we have v(w) = v(w′) if ξ∞(w) = ξ∞(w′), it
follows that

zTPλ(w,w)z =
∑
v∈Bλ

zT v(w)v(w)T z =
⟨P λπz, πz⟩

(Pw′∼ρ0 [ξ
∞−1(w∗)])2

= |supp(ρ∗)|2⟨P λπz, πz⟩.
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To see the last equality, observe that ρ∗ = ξ∞# ρ0 by A2.
Now recall that by Claim 33, for any λ ∈ Λ and g ∈ supp(µG), we have that {g(v)}v∈Bλ

is a basis for
Pλ = P λ, and thus

zTPλ(w,w)z = |supp(ρ∗)|2⟨P λπz, πz⟩ (D.5)

= |supp(ρ∗)|2zTEg∼µG

∑
v∈g(Bλ)

Ew′,w′′∼ρ0v(w)v(w
′)T1(ξ∞(w′), ξ∞(w′′) = w∗)z

= zTEg∼µG

 ∑
f∈F|λf=λ

g−1(f(g(w∗)))g−1(f(g(w∗)))T z +
∑

y∈F|λy=λ

|y(g(w∗)|2g−1(U)g−1(U)T

z.

Now for any f ∈ F ,

Eg∼µGg
−1(f(g(w∗)))(g−1(f(g(w∗))))T ⪯ Eg∼µG∥f(g(w

∗))∥2I (D.6)

= Ew∗′∼ρ∗∥f(w∗′)∥2I
= I.

Here the second to last inequality holds because we have defined µG to be a left-invariant measure on G that
induces a uniform measure on supp(ρ∗). The last equation holds by the fact that ρ∗ = ξ∞# ρ0 (see A2) and
since f is part of an orthonormal basis, we must have Ew∗∼ξ∞# ρ0∥f(w∗)∥2 = 1. Likewise, for y ∈ Y , using
(D.1),

Eg∼µG |(g(y))(w
∗)|2g−1(U)g−1(U)T = Eg∼µG |y(g(w

∗))|2UUT (D.7)

= Ew∗′∼ρ∗ |y(w∗′)|2UUT

= UUT .

Combining Equations (D.6) and (D.7) with (D.5) yields that

Pλ(w,w) ⪯ I

∑
f∈F

1(λf = λ) +
∑
y∈Y

1(λy = λ)

,

as desired.

D.2.3 Properties of Potential

To prove our key lemmas 10, 11, 12, we will need several preliminary lemmas.

Lemma 35. Suppose the high probability event in Lemma 19 holds for S = Bτ and v ∈ L2(Sd−1, ρ0,Rd)
which is an eigenfunction of H⊥

∞. Suppose (H⊥
∞, ρ0) has the CRI with respect to Bt

τ := ξ−1
t (Bτ ). Then

with ∥v∥∞ := supw ∈ Sd−1∥v(w)∥, we have

⟨∇ϕv(t),∆t⟩B
t
τ

H⊥
∞

= PρMF
t
[Bτ ]λvϕv(t) + E∥v∥∞,

where

E ≤ ϵ19mEi∥∆t(i)∥+ Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ).
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Proof. First observe that

∇ϕv = v sign(⟨v,∆t⟩),

and thus

⟨∇ϕv(t),∆t⟩B
t
τ

H⊥
∞

= sign(⟨v,∆t⟩)⟨v,∆t⟩B
t
τ

H⊥
∞

Now by the conclusion of the concentration Lemma 19, we have

⟨v,∆t⟩B
t
τ

H⊥
∞

= EiX(i)∆t(i)1(ξt(wi) ∈ Bτ )± ∥v∥∞ϵ19mEi∥∆t(i)∥.

where X(i) = Ew′∼ρ0H
⊥
∞(wi, w

′)v(w′)1(ξt(w
′) ∈ Bτ ) Now since v is an eigenfunction of H⊥

∞, by the
definition of consistent isometry, we have that

X(i) = λvv(wi)PρMF
t
[Bτ ].

Thus

⟨v,∆t⟩B
t
τ

H⊥
∞

= λv⟨v,∆t⟩B
t
τPρMF

t
[Bτ ]± ϵ19m∥v∥∞Ei∥∆t(i)∥.

Now

sign(⟨v,∆t⟩)⟨v,∆t⟩B
t
τ = sign(⟨v,∆t⟩)⟨v,∆t⟩ ± Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )

= ϕv(t)± Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

Plugging this back in yields the lemma.

Now we prove Lemma 10, which we restate here.

Lemma 36 (Descent with Respect to Interaction Term). Let ΦQ(t) be as defined above, where Q is a Cb-
balanced spectral decomposition of H⊥

∞. Then for any τ > 0 for which the concentration event of Lemma 19
holds for S = Bτ , we have

⟨∇ΦQ(t),−H⊥
t ∆t⟩ ≤ (1 + Cb)Ei∥EjH

⊥
t (i, j)∥1(ξt(wi) /∈ Bτ ) + E10,

where E10 = OCreg,Cb(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
19
m )Ω(t)).

Proof. Let Bt
τ := ξ−1

t (Bτ ), and let B̄t
τ be the complement in Sd−1 of Bt

τ . We decompose

⟨∇ΦQ(t),∆t⟩H⊥
t
= ⟨∇ΦQ(t),∆t⟩B

t
τ ,B

t
τ

H⊥
t

+ ⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

+ ⟨∇ΦQ(t),∆t⟩B̄
t
τ ,Sd−1

H⊥
t

. (D.8)

Lets start with the first term ⟨∇ΦQ(t),∆t⟩B
t
τ ,B

t
τ

H⊥
t

= ⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t

. Bounding this term is the key part of
the lemma.

Claim 37.

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

19
mΩ(t) + |⟨∇Φ(t), G⟩|,

where Ei∥G(i)∥ ≤ CregτΩ(t).
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Proof. We have

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
= ⟨∇ΦQ(t),∆t⟩B

t
τ

H⊥
∞
+ ⟨∇ΦQ(t), G⟩, (D.9)

where ∥G(i)∥ ≤ CregτEi∥∆t(i)∥, since ∥K ′(ξ∞(w), ξ∞(w′)) −K ′(ξt(w), ξt(w
′))∥ ≤ Cregτ . This relies

on the fact that from the proof of A2, almost surely ∥ξt(w) − ξ∞(w)∥ ≤ τ , because ∥ξt(w) − ξ∞(w)∥ ≤
minw∗∈supp(ρ∗) ∥ξt(w) − w∗∥ ≤ τ . Now we will break up ΦQ into the ΨQ and Ω parts. Starting with the
ΨQ part, we have

⟨∇ΨQ(t),∆t⟩B
t
τ

H⊥
∞

=
∑
λ∈Λ

ηλ

∑
v∈Bλ

ϕv(t)⟨∇ϕv(t),∆t⟩B
t
τ

H⊥
∞√∑

v∈Bλ
(ϕv(t))2

(D.10)

=
∑
λ∈Λ

ηλ

∑
v∈Bλ

ϕv(t)
(
λϕv(t)PρMF

t
[Bτ ] + Ev

)
√∑

v∈Bλ
(ϕv(t))2

= PρMF
t
[Bτ ]

∑
λ∈Λ

ηλ

λ

√∑
v∈Bλ

(ϕv(t))2 +

∑
v∈Bλ

ϕv(t)Ev√∑
v∈Bλ

(ϕv(t))2


≥ PρMF

t
[Bτ ]

∑
λ∈Λ

ηλλ

√∑
v∈Bλ

(ϕv(t))2 − E ,

where we used Cauchy-Schwartz in the last inequality, the fact that
∑

λ ηλ = 1, and ∥Ev∥ ≤ E , the error
term appearing in Lemma 35.

Next consider the ⟨∇Ω(t),∆t⟩B
t
τ

H⊥
∞

part. Recall from the definition of WED that H⊥
∞(w,w′) =

∑
v∈Q λvv(w)v(w

′)⊤.

Let ui := ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ . We can expand∣∣∣⟨∇Ω(t),∆t⟩B
t
τ ,Sd−1

H⊥
∞

∣∣∣ = ∣∣∣∣∣Ei,j

∑
v∈Q

λvu
T
i v(wi)v(wj)

T∆t(j)1(wi ∈ Bt
τ )

∣∣∣∣∣ (D.11)

=

∣∣∣∣∣Ei

∑
v∈Q

λvu
T
i v(wi)1(i ∈ Bt

τ )
(
Ejv(wj)

T∆t(j)
)∣∣∣∣∣

≤
∑
v∈Q

λvϕv(t)Ei|uTi v(wi)|1(i ∈ Bt
τ ).

Now fix i. For any vector u ∈ Sd−1, since Q = {(Bλ, ηλ)}λ∈λ is Cb-balanced, we have∑
v∈Q

λvϕv(t)|uT v(wi)| =
∑
λ∈Λ

λ
∑
v∈Bλ

ϕv(t)|uT v(wi)|

≤
∑
λ∈Λ

λ

√∑
v∈Bλ

(ϕv(t))2
√∑

v∈Bλ

|uT v(wi)|2

=
∑
λ∈Λ

λ

√∑
v∈Bλ

(ϕv(t))2

√√√√√uT

∑
v∈Bλ

v(wi)v(wi)T

u

≤
∑
λ∈Λ

ηλλ

√∑
v∈Bλ

(ϕv(t))2.
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Here the final inequality follows from the definition of a WED , which states that for any w ∈ Sd−1,∑
v∈Bλ

v(w)v(w)T ⪯ η2λI . Thus plugging this back into to Equation (D.11), we have∣∣∣⟨∇Ω(t),∆t⟩B
t
τ ,[m]

H⊥
∞

∣∣∣ ≤ Pi[B
t
τ ]
∑
λ∈Λ

ηλλ

√∑
v∈Bλ

(ϕv(t))2.

Now letting Hi = H⊥
∞(wi, wj)Ej∆t(j)1(wi /∈ Bt

τ ), we have∣∣∣⟨∇Ω(t),∆t⟩B
t
τ

H⊥
∞
− ⟨∇Ω(t),∆t⟩B

t
τ ,[m]

H⊥
∞

∣∣∣ ≤ |⟨∇Ω(t), H⟩| ≤ CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and thus ∣∣∣⟨∇Ω(t),∆t⟩B
t
τ

H⊥
∞

∣∣∣ ≤ Pi[B
t
τ ]
∑
λ∈Λ

ηλλ

√∑
v∈Bλ

(ϕv(t))2 + CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ). (D.12)

Now recall that ΦQ(t) := Ω(t)+ΨQ(t). Thus combining Equations (D.12) and (D.10), and Equation (D.9),
and plugging in the bound on E from Lemma 35, we have

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

19
mΩ(t) + |⟨∇ΦQ(t), G⟩|,

where Ei∥Gi∥ ≤ CregτΩ(t). Here we have also used the fact that for all v in the WED Q, we have that
∥v∥∞ ≤

√
Cb ≤ Cb (this is evident from the definition of WED ). This proves the claim.

Next consider the second term ⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

in Equation (D.8). We have∣∣∣⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

∣∣∣ = ⟨∇ΦQ(t), H⟩, (D.13)

where ∥H(i)∥ ≤ CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

Finally, for the third term ⟨∇ΦQ(t),∆t⟩B̄
t
τ ,Sd−1

H⊥
t

in Equation (D.8), we have just write

⟨∇ΦQ(t),∆t⟩B̄
t
τ ,Sd−1

H⊥
t

= ⟨∇ΦQ(t),mt⟩B̄
t
τ , (D.14)

where we recall that mt(i) = EjH
⊥
t (i, j)∆t(j).

Combining Equations (D.13), (D.14) and Claim 37 into Equation D.8, we obtain that

⟨∇ΦQ(t),∆t⟩H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

19
mΩ(t) + |⟨∇ΦQ(t), G+H +mt⟩|,

where Ei∥G(i) +H(i)∥ ≤ Creg(τΩ(t) + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )).
Now we use Lemma 12 to bound

|⟨∇ΦQ(t), G+H +mt⟩| ≤ Ei∥G(i) +H(i) +mt(i)∥(1 + Cb)

≤
(
Creg(τΩ(t) + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )) + Ei∥mt(i)∥

)
(1 + Cb).

Plugging this back in to the equation above yields

⟨∇ΦQ(t),∆t⟩H⊥
t
≥ −(1 + Cb)Ei∥mt(i)∥ − E10,
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where

E10 = (Creg(2 + Cb) + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (Cbϵ
19
m + (1 + Cb)Cregτ)Ω(t)

= OCreg,Cb(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
19
m )Ω(t)).

This proves the lemma.

Now we prove Lemma 11, which we restate here.

Lemma 38 (Descent with Respect to Local Term). Suppose Assumption 4 holds with (CLSC, τ). Let Q be a
Cb-balanced spectral distribution. Then with C11 = OCreg,Cb(1), we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(
c
√

LD(ρMF
t )

2 − C11τ

)
ΦQ(t) +C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) +CbEi∥∆t(i)∥2.

Proof. Let δ :=
√

LD(ρMF
t ). We will show that

⟨∇Ω(t), D⊥
t ⊙∆t⟩ ≤ −(CLSCδ)Ω(t) + 2CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and that

⟨∇ΨQ(t), D
⊥
t ⊙∆t⟩ ≤ −(CLSCδ)ΨQ(t) +

CLSCδ + 2CbCregτ

2
Ω(t) (D.15)

2CbCregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

The first statement is straightforward. Since ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ , we have

⟨∇Ω(t), D⊥
t ⊙∆t⟩ ≤ Ei

∆t(i)
TD⊥

t (i)∆t(i)

∥∆t(i)∥

= Ei
∆t(i)

TD⊥
t (i)∆t(i)

∥∆t(i)∥
1(ξt(wi) ∈ Bτ ) + Ei

∆t(i)
TD⊥

t (i)∆t(i)

∥∆t(i)∥
1(ξt(wi) /∈ Bτ )

≤ −CLSCδEi∥∆t(i)∥1(ξt(wi) ∈ Bτ ) + Ei∥D⊥
t (i)∆t(i)∥1(ξt(wi) /∈ Bτ )

≤ −CLSCδEi∥∆t(i)∥+ 2CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

as desired.
For the second statement, write

D⊥
t (i) = D

good
t (i) +Dbad

t (i),

where

D
good
t (i) = −c1P

⊥
ξ∞(wi)

(V V T )P⊥
ξ∞(wi)

− c2(UUT ).

By the structured condition in Assumption 4, we can write such a decomposition where c1, c2 ≥ CLSCδ, and
for any i such that ξt(wi) ∈ Bτ , we have ∥Dbad

t (i)∥ ≤ CLSCδ
2
√
Cb

+ Cregτ . Note that this decomposition still

holds for i where ξt(wi) /∈ Bτ , but ∥Dbad
t (i)∥ can be as large as 2Creg.

Claim 39.

⟨∇ϕv(t), D
good
t ⊙∆t⟩ ≤ −CLSCδϕv(t) + ⟨∇ϕv(t), G⟩,

where ∥G(i)∥ ≤ τ∥∆t(i)∥+ 0.5∥∆t(i)∥2 + ∥∆t(i)∥1(ξt(wi) /∈ Bτ ).;
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Proof.
Now recall that in the construction for Q given in Lemma 29, for any v ∈ supp(Q), it holds that either

v(w) ∈ span(U) for all w ∈ Sd−1, or v(w) ∈ span(V ) for all w ∈ Sd−1. We consider the two cases
separately. First suppose v(w) ∈ span(U) for all w ∈ Sd−1. Fix wi with ξt(wi) ∈ Bτ . For any w, we have

v(w)TD
good
t (i)∆t(i) = −c2v(w)

T∆t(i),

and thus the desired conclusion holds. Now suppose v(w) ∈ span(V ). Note that V commutes with P⊥
ξ∞(wi)

.
Thus any w, we have

v(w)TD
good
t (i)∆t(i) = −c1v(w)P

⊥
ξ∞(wi)

∆t(i).

Now for i with ξt(w) ∈ Bτ , we have ∥ξt(w) − ξ∞(w)∥ ≤ τ (see the proof of A2), and thus, since
additionally |∆t(i)ξt(w)| ≤ ∥∆t(i)∥2

2 (see (B.2) in the proof of Lemma ??), we have that

v(w)TD
good
t (i)∆t(i) = −c1v(w)P

⊥
ξ∞(wi)

∆t(i)

= −c1v(w)∆t(i) +O(τ∥v(w)∥+ ∥∆t(i)∥2).

Thus in conclusion, we have that

⟨∇ϕv(t), D
good
t ⊙∆t⟩ ≤ −c2δϕv(t) + ⟨∇ϕv(t), G⟩,

where ∥G(i)∥ ≤ τ∥∆t(i)∥+ 0.5∥∆t(i)∥2 + ∥∆t(i)∥⊮(ξt(wi) /∈ Bτ ). This proves the claim.
Thus with G as in the claim,

⟨∇ΨQ(t), D
good
t ⊙∆t −G⟩ ≤

∑
λ∈Λ

ηλ

∑
v∈Bλ

ϕv(t)⟨∇ϕv(t), D
good
t ⊙∆t⟩√∑

v∈Bλ
(ϕv(t))2

≤
∑
λ∈Λ

ηλ

∑
v∈Bλ

−CLSCδ(ϕv(t))
2√∑

v∈Bλ
(ϕv(t))2

= −CLSCδ
∑
λ∈Λ

ηλ

√∑
v∈Bλ

(ϕv(t))2

= −CLSCδΦQ(t).

It follows that from the proof of Lemma 12 (see Equation (D.16)) we have

|⟨∇ΨQ(t), D
good
t ⊙∆t −G⟩| ≤ Cb

(
τΩ(t) + 0.5Ei∥∆t(i)∥2 + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )

)
Similarly, we have that

⟨∇ΨQ(t), D
bad
t ⊙∆t⟩ = ⟨∇ΨQ(t), D

bad
t ⊙∆t⟩Bt

τ
+ ⟨∇ΨQ(t), D

bad
t ⊙∆t⟩B̄t

τ

≤ Cb

(
CLSCδ

2
√
Cb

+ Cregτ

)
Ei∥∆t(i)∥+ Cb(2Creg)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and so

⟨∇ΨQ(t), D
⊥
t ⊙∆t⟩ ≤ −CLSCδΨQ(t) +

(
CLSCδ + 2CbCregτ

2
Ω(t)

)
+ 3CbCregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

This yields (D.15), which proves the lemma.

We now prove Lemma 12, which we restate here.
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Lemma 40 (L1 Perturbation Lemma). Let Q be a Cb-balanced spectral distribution. Let G : [m] → Rd.
Then |⟨∇ΦQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥.

Proof. [Proof of Lemma 12] First observe that ⟨∇ΦQ(t), G⟩ ≤ Ei∥G(i)∥, since ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ , which
has norm 1. Now for any v ∈ supp(Q), we have

|⟨∇ϕv(t), G⟩| ≤ Ei|G(i)T v(wi)|,

and so

|⟨∇ΨQ(t), G⟩| ≤
∑
λ∈Λ

ηλ

∑
v∈Bλ

ϕv(t)|⟨∇ϕv(t), G⟩√∑
v∈Bλ

(ϕv(t))2
(D.16)

≤ Ei

∑
λ∈Λ

ηλ

∑
v∈Bλ

ϕv(t)|G(i)T v(wi)|√∑
v∈Bλ

(ϕv(t))2


≤ Ei

∑
λ∈Λ

ηλ

√∑
v∈Bλ

(ϕv(t))2
√∑

v∈Bλ
|G(i)T v(wi)|2√∑

vBλ
(ϕv(t))2



= Ei

∑
λ∈Λ

ηλ

√√√√√G(i)T

∑
v∈Bλ

v(wi)v(wi)T

G(i)


≤ Ei

∑
λ∈Λ

η2λ∥G(i)∥ = CbEi∥G(i)∥.

Here in the third inequality, we used Cauchy-Schwartz. It follows that

|⟨∇ΦQ(t), G⟩| ≤ |⟨∇Ω(t), G⟩|+ |⟨∇ΨQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥,

as desired.

D.3 Dynamics of the potential

Before proving our main theorem on the dynamics of the potential, we need the following lemma, which
gathers all the required concentration events.

Lemma 41. Fix some δ. With high probability as d,m, n → ∞, the events in all concentration lemmas
(Lemma 17,Lemma 21, Lemma 18 and Lemma 19) hold, where we apply Lemma 18 and Lemma 19 for
S = Bτ for all

τ ∈
{

CLSC · rd(e)
8(C10 + C11)

}
e∈[δ,1]

,

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) ∈ [z/2, z]). We also apply
Lemma 19 for all eigenfunctions v in the WED Q.
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Proof. The set
{

c·rd(e)
8(C10+C11)

}
e∈[δ,1]

has size at most OC10,C11(log2(1/δ)), so we can take a union bound over

the result in Lemma 18 for all Bτ . Similarly, since there are O(dCρ∗) eigenfunctions in Q (see the proof
of Lemma 29), we take a union bound of Lemma 19 over all these eigenfunctions. (Note that the “with
high probability” is explicitly o(1/d) there). The rest follows immediately from the three concentration
lemmas.

For the remainder of the text, we assume the following assumptions hold up to time T (if relevant):
Assumptions 1,2,4,5. Let (CLSC, τ) denote the parameters of the local strong convexity (we will use the
parameter τ differently later). We also assume that Q is a Cb-balanced WED , where by Lemma 9, we have
that Cb = Cρ∗ .

Theorem 3 (Main Potential Dynamics Theorem). Let δ :=
√
LD(ρMF

t ), and let C be a constant depending
on CLSC, τ, δ and Cb. Then with high probability over the draw ρm0 , for all t ≤ T , Condition on the event that
the high probability event in Lemma 41 holds for δ. Let ϵn,m := ϵn+ ϵ17m + ϵ18m + ϵ19m from the concentration
lemmas. Suppose n and m are large enough such that J4

maxT
3(ϵn + ϵm) ≤ 1/C. Suppose that

J2
max

(∫ t

s=0
ΦQ(s)

2ds

)
≤ ϵn,m.

and J2
maxt

2ϵn,m ≤ 1
64 . Then for some C = OCreg,Cb(1) and τ = ΩCreg,Cb(δ), we have

d

dt
ΦQ(t) ≤ −CLSCδ

C
ΦQ(t) + CJavg(τ)

∫ t

s=0
ΦQ(s)ds+ CJmaxtϵn,m.

Corollary 42 (Solution to Potential Dynamics). Suppose that for some τ = ΩCreg,Cb(δ),

4J4
maxC

2T 3 exp(2CJavg(τ)t/(CLSCδ))ϵn,m ≤ 1.

Then for some C = OCreg,Cb(1) we have

ΦQ(T ) ≤ exp(CTJavg(τ)/(CLSCδ))CJmaxTϵn,m.

Proof. We will use real induction (see eg. [Cla12, Theorem 2]). Our inductive hypothesis will be that for
some t,

J2
max

(∫ t

s=0
ΦQ(s)

2ds

)
≤ 1

2
ϵn,m.

Note that is implies the assumption in Equation 3. Clearly this holds for t = 0. Since ΦQ(s) is continuous,
if Equation 3 holds for all s < t, it also holds for t. This is the continuity assumption. Finally, for the
inductive step, we will show that if Equation 3 holds for some s, then for some ι small enough, it holds at
s+ ι. To show this, first we use Lemma 44 (which bounds the solution of the ODE given in Theorem 3), to
show that for all s′ ≤ s,

ΦQ(s
′) ≤ exp(Cs′Javg(τ)/(CLSCδ))CsJmaxϵn,m + ϵn,m ≤

(
exp(CsJavg(τ)/(CLSCδ))CsJmax

)
ϵn,m.

Note that ΦQ(t) is continuous. Thus for ι small enough, we have ΦQ(t) ≤ ΦQ(s)+ϵn,m for all t ∈ [s, s+ι].
It follows that for ι small enough,∫ t

s′=0
(ΦQ(s

′))2ds′ ≤ (CtJmaxϵn,m)2
∫ s

s′=0
exp(2CsJavg(τ)/(CLSCδ))ds

′ +

∫ t

s′=s
(ΦQ(s) + ϵn,m)2ds′

≤ 2(CtJmaxϵn,m)2t exp(2CJavg(τ)t/(CLSCδ))

40



Now using the assumption in the corollary that

4J4
maxC

2t3 exp(2CJavg(τ)t/(CLSCδ))ϵn,m ≤ 1,

it follows that
∫ s′

s=0(ΦQ(s))
2ds ≤ ϵn,m

2J2
max

.
This proves the inductive step. Thus by real induction, the hypothesis holds up to time T . The result of

the lemma then holds by applying Lemma 44 to the result of Theorem 3 at time T .

Proof. [Proof of Theorem 3] Recall from Lemma 5 that

d

dt
∆t(i) = D⊥

t (i)∆t(i)− EjH
⊥
t (i, j)∆t(j) + ϵt,i,

where

∥ϵt,i∥ ≤ 2ϵn,m + 2Creg
(
∥∆t(i)∥2 + Ej∥∆t(j)∥2

)
.

Now we have

d

dt
ΦQ(t) ≤ ⟨∇ΦQ(t),

d

dt
∆t⟩

= −⟨∇ΦQ(t), H
⊥
t ∆t⟩+ ⟨∇ΦQ(t), D

⊥
t ⊙∆t⟩+ ⟨∇ΦQ(t), E⟩,

where E(i) = ϵt,i. We will consider the terms in order. Let

τ :=
CLSC · rd(δ)
8(C10 + C11)

,

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) ∈ [z/2, 2z]).
Now by Lemma 10, we have

−⟨∇ΦQ(t), H
⊥
t ∆t⟩ = −⟨∇ΦQ(t),∆t⟩H⊥

t
≤ (1 + Cb)Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) + E10,

where mt(i) = EjH
⊥
t (i, j)∆t(j), and

E10 = C10(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
19
m )Ω(t)).

Next by Lemma 11, we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(
CLSCδ

2
− τC11

)
ΦQ(t) + C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

Putting these together, and employing Lemma 12, yields

d

dt
ΦQ(t) ≤

(
−CLSCδ

4

)
ΦQ(t) (D.17)

+ (C10 + C11)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )

+ (1 + Cb)Ei∥mt(i)∥1(ξt(wi) /∈ Bτ )

+ (1 + 2Cb)Ei∥ϵt,i∥,

where here we used that τ was chosen such that (C11+C10)(τ+Cbϵ
19
m ) ≤ CLSCδ

8 , and trivially, Ω(t) ≤ ΦQ(t).
We also bounded Ei∥∆t(i)∥ by Ei∥ϵt,i∥.
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Now let us consider the term Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ). Using Lemma 20, we have

Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(
ϵn,m + Javg(τ)

)
ΦQ(t).

Now let use consider the term Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ). Recall from Equation (2.2) that

∆t(i) = −
∫ t

s=0
Jt,s(i)ms(i)ds+

∫ t

s=0
Jt,s(i)ϵs,ids.

Thus by Lemma 20, we have

Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(
ϵn,m + Javg

) ∫ t

s=0
ΦQ(s)ds

+

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥1(ξt(wi) /∈ Bτ )ds.

Plugging this back into Equation (D.17) yields

d

dt
ΦQ(t) ≤ −CLSCδ

5
ΦQ(t) + (C10 + 4

√
CbCreg)(1 + Cb)(ϵn,m + Javg(τ))

∫ t

s=0
ΦQ(s)ds

+ (1 + Cb)Ei∥ϵt,i∥+ (1 + Cb)(C10 + 4
√
CbCreg)

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds

≤ −CLSCδ

5
ΦQ(t) + CJavg(τ)

∫ t

s=0
ΦQ(s)ds

+ (1 + Cb)Ei∥ϵt,i∥+ C

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds,

where C = OCreg,Cb(1). Let us simplify the error terms. Appealing to Lemma 43, we have for all i,
∥∆t(i)∥2 ≤ 4ϵn,m and Et,i :=

∫ t
s=0 ∥Jt,s(i)ϵs,i∥ds ≤ 8Jmaxtϵn,m.

Thus

Ei∥ϵt,i∥ ≤ 2ϵn,m + 4CregEi∥∆t(i)∥2 ≤ 18Cregϵn,m,

and ∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds = EiEt,i ≤ 8Jmaxtϵn,m.

Thus plugging this back into the bound on the dynamics, we have

d

dt
ΦQ(t) ≤ −CLSCδ

5
ΦQ(t) + CJavg

∫ t

s=0
ΦQ(s)ds+ CJmaxtϵn,mds,

where C = OCreg,Cb(1).

Lemma 43 (Inductive Squared Error Bound.). Suppose Assumption 2 hold with value Jmax. Suppose for all
t′ ≤ t, we have

J2
max

(∫ t′

s=0
ΦQ(s)

2ds

)
≤ ϵn,m.
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and J2
maxt

2ϵn,m ≤ 1
64 . Then for all i and t′ ≤ t, we have

∥∆t′(i)∥2 ≤ 4ϵn,m

Et,i :=

∫ t

s=0
∥Jt,s(i)ϵs,i∥ds ≤ 8Jmaxtϵn,m,

where ϵs,i is defined in Lemma 5.

Proof. It suffices to prove the statement just for the final time t, because we could always apply the lemma
with a smaller value of t.

Recall that

ϵs,i ≤ 2ϵn,m + 2Creg
(
∥∆t(i)∥2 + Ej∥∆t(j)∥2

)
.

Since

Ei∥ϵt,i∥ ≤ 2ϵn,m + 4CregEi∥∆t(i)∥2,

by Equation 2.2, we have

∥∆t(i)∥ ≤
∫ t

s=0
Jt,s(i)(ms(i) + ϵs,i)ds

≤
∫ t

s=0
∥Jt,s(i)ms(i)ds∥+

∫ t

s=0
∥Jt,s(i)ϵs,ids∥

=

∫ t

s=0
∥Jt,s(i)ms(i)ds∥+ Et,i

≤

√∫ t

s=0
∥Jt,s(i)∥2ds

√∫ t

s=0
∥ms(i)∥2ds+ Et,i

≤ Jmax

√∫ t

s=0
∥ms(i)∥2ds+ Et,i

≤ Jmax

√∫ t

s=0
ΦQ(s)2ds+ Et,i

≤ √
ϵn,m + Et,i,

Here in the second last inequality, we used the fact that ∥ms(i)∥ ≤ ΦQ(s) for any i, and in the last line, we
used assumption of the lemma. Note that this same calculation holds for all s ≤ t, so we have

∥∆s(i)∥ ≤ √
ϵn,m + Et,i.

Now lets bound Et,i:

Et,i :=

∫ t

s=0
∥Jt,s(i)ϵs,i∥ds ≤

∫ t

s=0
∥Jt,s(i)∥

(
2ϵn,m + 4Creg max

j
∥∆s(j)∥2

)
ds

≤ Jmax

∫ t

s=0

(
2ϵn,m +max

j

(
2ϵn,m + 2E2

t,j

))
ds,

where in the second line, we plugged in the bound on ∆s(i).
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Thus letting Et := maxj Et,j , we have

Et ≤ 2Jmaxt
(
2ϵn,m + E2

t

)
Now assuming the discriminant 1− 32J2

maxt
2ϵn,m > 0, this equation has two sets of disjoint solutions, one

small (including 0) and one large:

Et ∈

[
−∞,

1−
√

1− 32J2
maxt

2ϵn,m
4Jmaxt

]
∪

[
1 +

√
1− 32J2

maxt
2ϵn,m

4Jmaxt
,∞

]

Note that since at time t = 0, we have Et = 0, and Et is continuous, it must be that if the discriminant
is positive up to time t, the solution is always in the first set. Indeed, since an assumption of the lemma is
that J2

maxt
2ϵn,m ≤ 1

64 .
Thus we have

Et ≤
1−

√
1− 32J2

maxt
2ϵn,m

4Jmaxt
≤ 8Jmaxtϵn,m.

Plugging this back above into our bound on ∆t(i) yields that for all i,

∥∆t(i)∥2 ≤ 4ϵn,m.

Lemma 44 (ODE Analysis). Suppose we have a differential equation of the form

d

dt
Xt ≤ −aXt + b

∫ t

s=0
Xsds+ ϵ.

with initial condition X0 = 0 and a, b ≥ 0. Then

Xt ≤ exp(bt/a)
ϵ√

a2 + 4b
.

Proof. Let Yt solve the ODE

d

dt
Yt = −aYt + b

∫ t

s=0
Ysds+ 2ϵ,

with initial condition Y0 = 0, and let Zt = Xt − Yt. We will show that Zt never goes above 0.
Observe that Zt solves the differential equation

d

dt
Zt ≤ −aZt + b

∫ t

s=0
Zsds− ϵ,

with initial condition Zt = 0. One can check by the real induction that Zt ≤ 0. Indeed, if Zs ≤ 0 for all
s < t, then we have Zt ≤ 0. Further, since Zt is continuous, if the hypothesis Zt ≤ 0 holds up to time s,
we can show that it holds at time s+ ι for some ι > 0. Indeed, for ι small enough (in terms of b and ϵ), for
all r ∈ [s, s+ ι], we have Zr ≤ ϵ

b . Thus for r ∈ [s, s+ ι], we have d
drZr ≤ −aZr + bι

(
ϵ
b

)
− ϵ ≤ −aZr for

ι ≤ 1. Then Gronwall’s inequality gives that Zs+ι ≤ Zs ≤ 0, which is the inductive step. This yields the
claim that Zt ≤ 0 for all t > 0.
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Now we just need to solve the differential equation for Yt. Taking a second derivative, we have

Y ′′
t = −aY ′

t + bYt.

A standard second order ODE analysis yields that

Yt = C1 exp(r1t) + C2 exp(r2t),

where r1 and r2 are the roots of x2 + ax− b = 0, that is,

(r1, r2) =
−a±

√
a2 + 4b

2

Checking the initial condtitions of Y0 and Y ′
0 yields

Yt =

(
ϵ√

a2 + 4b

)
(exp(r1t)− exp(r2t)),

where r1 is the larger root. Since r1 ≤ b
a , we obtain the lemma.

E Applications to Learning a Single Index Model

E.1 Setting

We will study the setting of learning a well-specified even single index function f∗(x) = σ(xTw∗), where
w∗ ∈ Sd−1, and σ(z) =

∑K
k=k∗ ckHek(z), where:

1. k∗ ≥ 4, and 1
CSIM

≤ ck∗ ≤ CSIM maxk ck.

2. For all k, ck ≥ 0.

3. All k with ck ̸= 0 are even. (That is, σ is an even function).

We assume the initial distribution ρ0 of the neurons is uniform on Sd−1, and the data is drawn i.i.d from the
distribution D, which has Gaussian covariates, and subgaussian label noise: that is,

x ∼ N (0, Id) ∼ Dx

y = f∗(x) + ζ(x),

where ζ(x) has mean 0 and is 1-subgaussian.
We will prove the following theorem, which we restate from Theorem 2 in the main body.

Theorem 4. Fix any δ small enough. Consider the setting (f∗, ρ0,Dx) described above for d large enough

(in terms of δ). Then for some t ≤ OK,Creg(
√
d
k∗−2

δ−k∗), we have

Ex∼Dx(fρMF
t
(x)− f∗(x))2 ≤ δ2.

Further, suppose n,m ≥ d13k
∗
. Let D̂ be the empirical distribution of n samples drawn from D. With high

probability over D̂ and the initialization ρm0 , we have

Ex∼Dx(fρmt (x)− f∗(x))2 ≤ 2δ2.

We will prove Theorem 2 by (1) analyzing the MF dynamics to show the convergence of ρMF
t , and then

(2) checking the assumptions of Theorem 1 hold, and applying it to show the convergence of ρmt .
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Notation Define α(w) := |wTw∗|. Let v(α, t) denote the velocity of a particle w with α(w) = α in the
w∗ sign(wTw∗) direction. Formally, we have

v(α, t) := ⟨w∗, V (w, ρMF
t )⟩ sign(wTw∗),

for any w with α(w) = α. We will often use the notation α ∼ ρ or α′ ∼ ρ to denote the distribution of α(w)
with w ∼ ρ. We use αt(w) := α(ξt(w)). We use ξt,s(w) denote the location of the particle at time t which
is initialized at w at time s. In this language, we have that ξt(w) = ξt,0(w). We similarly define αt,s(β) to
be α(ξt,s(w)) for any w with α(w) = β.

We will use qσ to denote the polynomial with kth coefficient k!c2k, where
∑

ckHek(z) is the Hermite
decomposition of σ. Similarly, we denote qσ′(z) =

∑K−1
k=k∗−1 c

2
k+1(k + 1)(k + 1)!zk. From the Hermite

polynomial identity that ExHek(wTx)Hej(vTx) = k!δjk(w
T v)k, we have

Exσ(w
Tx)σ(vTx) = qσ(w

T v).

Exσ
′(wTx)σ′(vTx) = qσ′(wT v).

E.2 Bounds on the Velocity and its Derivative

Figure 3: Self-Concordance Property: The top eigenvalue of the
Local Hessian is Bounded as by k−1

αt
V (αt)

The key ingredients in both the MF convergence analysis, the perturbation analysis (bounding Jmax and
Javg), and in showing local strong convexity, is obtaining a lower bound on the particle velocity, and bounds
on the local Hessian, D⊥

t (w).
It turns out, it is much easier to bound these quantities under a certain inductive assumption (which in

our MF analysis we will prove holds). We define the inductive property with parameter ι to hold at time t if

Pw∼ρMF
t
[α(w) ∈ [ι, 1− ι]] ≤ ι. (⋆)

Eventually, we will choose ι to be some small constant dependent on the desired final loss δ.
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Lemma 45 (Lower Bound of Velocity). Let δ :=
√

Ex(fρMF
t
(x)− f∗(x))2. Suppose (⋆) holds at time t for

ι ≤ min
(
ΘK(1), δ6K

2
)

. Then

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)−OK

(
(1− α2)Rα

)
,

where Rα = OK(ι(α
√
d
−max(2,k∗−2)

+ αmax(1,k∗−3)
√
d
−2

) + α
√
d
−k∗

), and rt = Eα′∼ρMF
t
(α′)k

∗
=

ΩK(δ). In particular, if α ≥ δ3K√
d

, for d large enough (in terms of δ,K), we have that

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)(1−
√
ι).

Proof. Let us expand the velocity by expressing v(α, t) as a polynomial in terms of α. Fix w with α(w) = α
and without loss of generality assume wTw∗ > 0. For w′ ∈ Sd−1, we denote w′ = α′w∗ + y, where
y′ ∈

√
1− α′2Sd−2, which we will use to denote the sphere perpendicular to w∗ of radius

√
1− α′2. We

expand

V (w, ρMF
t )Tw∗ = Ex(f

∗(x)− fρMF
t
(x))σ′(wTx)xTP⊥

w w∗ (E.1)

= Exσ(w
∗Tx)σ′(wTx)xTP⊥

w w∗ − Ew′∼ρMF
t
Exσ(w

′Tx)σ′(wTx)xTP⊥
w w∗

= qσ′(wTw∗)w∗TP⊥
w w∗ − Ew′∼ρMF

t
qσ′(wTw′)(w′)TP⊥

w w∗

= qσ′(α)(1− α2)− Ew′∼ρMF
t
qσ(w

Tw′)(w′)TP⊥
w w∗

= qσ′(α)(1− α2)− Eα′∼ρMF
t
Ey′∼

√
1−α′2Sd−2qσ(αα

′ + y′Tw)
(
α′(1− α2)− αy′Tw

)
.

Here in the fifth equality, we used the rotational symmetry of ρMF
t about the w∗ axis.

Lets break down this expression. Let

rt,k := Eα∼ρMF
t
αk.

Fix a (necessarily odd) coefficient k∗ − 1 ≤ k ≤ K − 1 of the polynomial qσ′(z) :=
∑

qkz
k, and

consider all terms in the above equation arising from that order term:

qkα
k(1− α2)− qk

k∑
j=0

(
k

j

)
(αα′)jEy′∼

√
1−α′2Sd−2(y

′Tw)k−j(α′(1− α2)− αy′Tw)

= qkα
k(1− α2)(1− rt,k+1) + Eα′∼ρMF

t
Eα,α′,k,

where

Eα,α′,k =

Ok

(
(1− α2)(α′)2(1− α′2)(α

√
d
−(k−1)

+ αk−2
√
d
−2

) + α(1− α2)
√
d
−(k+1)

)
k ≥ 3

0 k = 1
.

Note here that we have used the fact that k is even and Ey′(y
′Tw)j = Oj(

(
(1− α′2)(1− α2)d−1

)j/2
),

and is 0 for odd j. The final error terms arises from the fact that we have only counted the terms in
the binomial expansion which could be most significant — depending on the relative size of αα′ and√
(1− α2)(1− α′2)/

√
d. Now plugging in the hypothesis (⋆), we have that Eα′∼ρMF

t
(α′)2(1 − α′2) ≤ 2ι,

so for all k,

Eα,α′,k = Ok

(
(1− α2)ι(α

√
d
−(k−1)

+ αk−2
√
d
−2

) + α(1− α2)
√
d
−(k+1)

)
≤ (1− α2)Rα
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Summing over all odd k∗ − 1 ≤ k ≤ K − 1 yields that

v(α, t) =

K−1∑
k=k∗−1

qkα
k(1− α2)(1− rt,k+1) + (1− α2)Rα (E.2)

≥ qσ′(α)(1− α2)(1− rt)− (1− α2)Rα,

where here in the inequality, we used the fact that rt = Eα′∼ρMF
t
(α′)k

∗ ≥ Eα′∼ρMF
t
(α′)k = rt,k for all

k ≥ k∗. Now for α ≥ δ3K√
d

, we have

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)

−OK

(
ι(1− α2)(αk∗−1δ−3K(k∗−2) + αk∗−1δ−6K) + (1− α2)αk∗−1δ−3K(k∗−2)/d

)
,

Since by Lemma 48, we have (1− rt) = Ω(δ), it follows that

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)(1−
√
ι).

In the following lemma, we analyze d
dαv(α, t). As will be shown in Section E.4, bounding d

dαv(α, t) is
useful in bounding D⊥

t (w). The second part of this lemma will also be instrumental in proving local strong
convexity (Definition 4).

Lemma 46. Let δ :=
√

Ex(fρMF
t
(x)− f∗(x))2. Suppose (⋆) holds at time t for ι ≤ min

(
ΘK(1), δ6K

2
)

.

Then

d

dα
v(α, t)

{
= k∗−1

α v(α, t) + Eα α ≤ 1;

≤ − α
1−α2 v(α, t)− ΩK(δ) α ≥ 1− 1

5K ,

where Eα := ΘK

(
αk∗ + ι(

√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)
.

Proof. First we compute d
dαv(α, t). Fix a coefficient k∗ − 1 ≤ k ≤ K − 1 of the polynomial qσ′ , and

consider all terms in the the derivative of Equation (E.1) arising from that order term:

qkkα
k−1

(
1− k + 2

k
α2

)
− qk

k∑
j=0

(
k

j

)
j(αα′)j−1Ey′∼Sd−2√

1−α′2
(y′Tw)k−j

(
α′
(
1− j + 2

j
α2

)
+

j + 1

j
αy′Tw

)

= kqkα
k−1

(
1− k + 2

k
α2

)
(1− rt,k+1) + Eα,k,

where Eα,k = Θk(ι(
√
d
−(k−1)

+ αk−3
√
d
−2

) +
√
d
−(k+1)

), and rt,k = Eα′∼ρMF
t
(α′)k.

Here we have used the same computations as in the proof of Lemma 45. Summing over all odd k∗−1 ≤
k ≤ K − 1 yields

d

dα
v(α, t) =

K∑
k=k∗−1

qkkα
k−1

(
1− k + 2

k
α2

)
(1− rt,k+1) + Eα,k (E.3)

= (k∗ − 1)qk∗−1(1− rt)α
k∗−2 +ΘK

(
αk∗ + ι(

√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)
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Combining Lemma 45 with the previous equation, we obtain

d

dα
v(α, t) =

k∗ − 1

α
v(α, t) + ΘK

(
αk∗ + ι(

√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)
.

This yields the first case in the conclusion of the lemma.

For the case that α ≥ 1− 1
5K ≥

√
k

k+0.5 for all k ≤ K, we have

k

(
1− k + 2

k
α2

)
≤ −1.5α2

We will compare the terms with coefficient qk in the first line of Equation (E.3) and the first line of Equa-
tion (E.2). Let

vk(α, t) := qkα
k(1− α2)(1− rt,k+1),

such that Equation (E.2) gives

v(α, t) =
K−1∑

k=k∗−1

vk(α, t) + (1− α2)Rα,

where Rα is as in Lemma 45. Thus the first line of Equation (E.3) gives

d

dα
v(α, t) =

∑
k

(vk(α, t))
1

α(1− α2)
k

(
1− k + 2

kα2

)
+ Eα,k

≤
∑
k

(vk(α, t))
−1.5α

(1− α2)
+ Eα,k

=
−1.5α

(1− α2)

(
v(α, t)− (1− α2)Rα

)
+
∑
k

Eα,k

≤ − α

1− α2
v(α, t)− ΩK(δ).

Here in the first inequality, we used the fact that all the ck (and hence all the qk and vk(α, t)) are non-negative.
In the last inequality, we have used the bounds on Rα and Eα,k, along with the fact from Lemma 45 that
v(α, t) = ΩK((1− α2)δ). This yields the desired conclusion.

A key part of both our MF convergence analysis, and the perturbation analysis is understanding the
stability of the αt(w) with respect to small changes in αs(w). The following lemma controls this derivative.
Define

ℓt,s(w) :=
dαt,s(β)

dβ

∣∣∣∣
β=αs(w)

Lemma 47. Suppose that for all s ≤ t, we have
√

Ex(fρMF
s
(x)− f∗(x))2 ≥ δ. Suppose ι ≤ min

(
ΘK(1), δ6K

2
)

,

and t ≤
√
d
k∗−2

ι . Finally suppose (⋆) holds for all s ≤ t. Then for and τ ≤ 1/2 and any w for which
αt(w) ≤ 1− τ , we have

ℓt,s(w) :=
dαt,s(β)

dβ

∣∣∣∣
β=αs(w)

=

(
αt(w)

αs(w)

)k∗−1

exp

(
OK

(
log(1/τ)

δ

))
.
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Proof. Observe that ℓt,s(w) satisfies the differential equation

d

dt
ℓt,s(w) =

(
d

dαt(w)
v(αt(w), t)

)
ℓt,s(w);

ℓs,s(w) = 1.

From Lemma 46, we have that

d

dt
ℓt,s(w) =

(
(k∗ − 1)

v(αt(w), t)

αt(w)
+ Eα

)
ℓt,s(w);

d

dt
αt(w) =

v(αt(w), t)

αt(w)
αt(w),

where we recall that

Eα = OK

(
αk∗ +

√
d
−k∗

+ ι
(√

d
−(k∗−2)

+ α
(k∗−4)
t

√
d
−2
))

Equivalently, taking logs, we have

d

dt

log(ℓt,s(w))

k∗ − 1
=

v(αt(w), t)

αt(w)
+ Eα;

d

dt
log(αt(w)) =

v(αt(w), t)

αt(w)
.

Let us split up the time interval into (at most 3) intervals: [s, t1], [t1, t2], [t2, t], where t1 is first moment
at which αt1 ≥ 1√

d
, and αt2 is the first moment at which αt2 = 0.5. In the first interval, we have Eα ≤

OK(ι
√
d
(k∗−2)

). In the second interval, by Lemma 45, we have Eα ≤ OK

(√
ιv(α,t)

α3
t

√
d
−2

+ v(α, t)α/δ
)

.

For the first interval, since t ≤
√
d
k∗−2

ι , we have∫ t1

r=s
Eαrdr ≤ OK(ι

√
d
−(k∗−2)

)(t1 − s) ≤ OK(1).

For the second interval, using u-substitution, we have∫ t2

r=t1

Eαrdr ≤ OK(
√
ι)

d

∫ t2

r=t1

v(αr, r)

(αr)3
dr +

∫ t2

r=t1

OK(v(αr, r)αr/δ)dr

=
OK(

√
ι)

d

∫ αt2

α=αt1

1

α3
dα+

∫ αt2

α=αt1

OK(α2/δ)dα+OK(α2
t2)

=
OK(

√
ι)

d

(
1

2α2
t1

− 1

2α2
t2

)
≤ OK(1/δ).

For the third interval, observe from Lemma 45 that during the duration of this interval, 1 − αr(w) decays
exponentially with rate OK(δ). Thus, the length of this interval is at most OK

(
log(1/τ)

δ2

)
, so

∫ t

r=t2

Eαrdr ≤ OK

(
log(1/τ)

δ

)
.
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Thus integrating, we obtain

log(ℓt,s(w))− log(ℓs,s(w))

k∗ − 1
=

∫ t

r=s

v(αr(w), t)

αr(w)
dr +OK(log(1/τ)/δ).

Plugging in the integration of the differential equation for log(αt(w)) yields

log(ℓt,s(w))

k∗ − 1
= log

(
αt(w)

αs(w)

)
+OK(log(1/τ)/δ).

Multiplying both sides by k∗ − 1 and exponentiating yields

ℓt,s(w) =

(
αt(w)

αs(w)

)k∗−1

exp

(
OK

(
log(1/τ)

δ

))
as desired.

Lemma 48. For d large enough in terms of δ =
√
Ex(fρMF

t
(x)− f∗(x))2, we have

1− Eα′∼ρMF
t
(α′)k

∗ ≥ ΩK,Creg(δ).

Proof. Observe that

Ex(f
∗(x))2 = Exσ(w

∗Tx)σ(w∗Tx) = qσ(1).

ExfρMF
t
(x)f∗(x) = ExEw′∼ρMF

t
σ(w′Tx)σ(w∗Tx) = Eα′∼ρMF

t
qσ(α

′).

Further

Ex(fρMF
t
(x))2 = ExEw,w′∼ρMF

t
σ(wTx)σ(w′Tx) = Ew,w′∼ρMF

t
qσ(w

Tw′).

Now for even k, we have

Ew,w′∼ρMF
t
(wTw′)k = Eα,α′∼ρMF

t
Eζ(αα

′ +
√

(1− α2)(1− α′)2ζ)k,

where ζ is 1√
d

-subgaussian. Thus by Minowski’s inequality, we have

Ew,w′∼ρMF
t
(wTw′)k ≤

((
Eα,α′∼ρMF

t
(αα′)k

)1/k
+

OK(1)√
d

)k

≤ Eα,α′∼ρMF
t
(αα′)k +

OK(1)√
d

=
(
Eα∼ρMF

t
αk
)2

+
OK(1)√

d
.

It follows that with qσ(z) =
∑

k qkz
k, we have

Ex(fρMF
t
(x)− f∗(x))2 = Ex(f

∗(x))2 + Ex(fρMF
t
(x))2 − 2Ef∗(x)fρMF

t
(x)

=
K∑

k=k∗

qk

(
1k +

(
Eα∼ρMF

t
αk
)2

− 2Eα∼ρMF
t
αk

)
+

OK(1)√
d

=

K∑
k=k∗

qk

(
1− Eα∼ρMF

t
αk
)2

+
OK(1)√

d
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Now for all k > k∗, with 1− s := r := Eα∼ρMF
t
(α)k

∗
, using (⋆), we have

r
k
k∗ ≤ Eα′∼ρMF

t
(α′)k,

so (
1− Eα∼ρMF

t
αk
)2

≤
(
1− rk/k

∗
)2

=
(
1− (1− s)k/k

∗
)2

≤ (1− (1− sk/k∗)) = OK(s2).

So

Ex(fρMF
t
(x)− f∗(x))2 = Ex(f

∗(x))2 = OK,Creg(1− Eα∼ρMF
t
(α)k

∗
) +

OK(1)√
d

,

and thus for d large enough in terms of δ =
√
Ex(fρMF

t
(x)− f∗(x))2, we have 1 − Eα∼ρMF

t
(α)k

∗
=

OK,Creg(δ) as desired.

E.3 MF Convergence Analysis

Proposition 49 (Convergence of fρMF
t

to f∗). Fix any δ small enough, and let ι = δ6K
2
. For d large enough,

we have

T (δ) := argmin{t : Ex(fρMF
t
(x)− f∗(x))2 ≤ δ2} = OK(

√
d
k∗−2

δ−(k∗−1)).

We also have the following implication (which we will use for the analysis of Jmax and Javg) for any t ≤ T (δ)
and for any τ > 0:

Ew∼ρMF
t
[(α(w))k

∗−11(α(w) ≤ 1− τ)] ≤
√
d
−(k∗−2)

OK,δ

(
1

τOK(1)

)
.

Proof. First we need to prove by induction on t that for all t ≤ T (δ), the hypothesis (⋆) holds. First observe
that it holds at time 0, because

Pw∼Sd−1 [α(w) ≥ ι] ≤ exp(Θ(d/ι2)) ≤ ι

for d large enough. Suppose the hypothesis holds up to some time s. We need to show that it holds at time
s+ϵ for some ϵ. First note that for ϵ small enough, by the continuity of v(α, t) and d

dαv(α, t), the conclusion
of Lemma 45 and Lemma 46 still hold up to time t. To prove the hypothesis holds at time t, our approach
will be to non-constructively bound the interval of I ⊂ [0, 1] for which α0(w) /∈ I implies αt(w) /∈ [ι, 1−ι].
We will use the following claim.

Claim 50. Suppose (⋆) holds up to time t. For any τ ≤ 1/2 and γ ≤ 1−τ
2 , we have

Pw∼ρMF
t
[α(w) ∈ [γ, 1− τ ]] ≤ 2

γk∗−2

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
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Proof. We will show that

Pw∼ρMF
t
[α(w) ∈ [γ, 2γ]] ≤ 1

γk∗−2

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
The claim will then follow by summing this bound over log2((1− τ)/γ) intervals.

Suppose we have some w and w′ with αt(w), αt(w
′) ∈ [γ, 2γ]. Since the conditions of Lemma 47

hold up to time t for any particle w̃ with α0(w̃) initialized between α0(w) and α0(w
′), by the mean value

theorem, we have that

αt(w)− αt(w
′) ≥

∣∣α0(w)− α0(w
′)
∣∣ min
w̃:α0(w̃)∈[α0(w′),α0(w′)]

(
αt(w̃)

α0(w̃)

)k∗−1

exp

(
OK

(
log(τ/(k∗ − 1))

δ

))

≥
∣∣α0(w)− α0(w

′)
∣∣( γ

α0(w′)

)k∗−1

exp

(
OK

(
log(τ)

δ

))
,

Thus since |αt(w)− αt(w
′)| ≤ γ, we have that∣∣α0(w)− α0(w

′)
∣∣ ≤ 1

γk∗−2

(
α0(w

′)
)k∗−1

exp

(
OK

(
log(τ)

δ

))
.

We need to upper bound the probability over ρ0 of the set in which α0(w
′) and α0(w) can lie. By the

above calculation, the set which α0(w
′) and α0(w) lies in is contained in

Iλ :=

[
λ√
d
,
λ√
d
+

1

γk∗−2

(
λ√
d

)k∗−1

exp

(
OK

(
log(τ)

δ

))]

for some λ. Recall that the distribution of α0(w) under w ∼ ρ0 is 1√
d

-subgaussian. Thus

Pw∼ρ0 [α0(w) ∈ Iλ] ≤
λk∗−1

γk∗−2

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ2

))(
exp(−λ2)

)
≤ 1

γk∗−2

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
.

This proves the claim.
Plugging γ = ι and τ = ι into this claim yields that

Pw∼ρMF
t
[α(w) ∈ [ι, 1− ι]] ≤ 2

ιk∗−2

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
≤ ι,

where the second inequality holds for d large enough in terms of δ. This proves the inductive step.
Now to prove the convergence guarantee, a standard analysis of the ODE for α (see eg. [DNGL23]) now

yields that, for any w with α0(w) ≥ δ2√
d

, we have that

αt(w) ≥ 1− 1

2K

for t ≥ Θ(1)

δ2(α0(w))k∗−2 . This arises directly from the fact that Lemma 45 guarantees that for α ≥ δ2√
d

,

v(α, t) ≥ ΘK(δαk∗−1(1− α2)).
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After that, it is clear that 1 − αt(w) decays exponentially fast (with rate Ω(δ)), so for t ≥ Θ(1)

δ(α0(w))k∗−2 +

OK(log(1/δ)) = Θ(1)

δ(α0(w))k∗−2 , we have 1− αt(w) ≤ δ/4.
Now using the initial distribution of α0(w) with w ∼ ρ0, we have that an at least 1 − δ/4 fraction of

particles have initialization α0(w) ≥ OK( δ√
d
). Clearly once all these particles achieve 1−αt(w) ≤ 1−δ/4,

we will have loss at most δ. Thus occurs at some time at most

ΘK(1)

δ(δ
√
d
−1

)(k∗−2)
= OK(

√
d
k∗−2

δ−(k∗−1)).

This proves the main statement of the proposition. To prove the additional clause, fix τ . We have

Ew∼ρMF
t
[(α(w))k

∗−11(α(w) ≤ 1− τ)] =

∫ 1−τ

β=0
Pw∼ρMF

t
[(α(w))k

∗−1 ∈ [β, (1− τ)]dβ.

=

∫ 1−τ

γ=0
Pw∼ρMF

t
[α(w) ∈ [γ

1
k∗−1 , (1− τ)

1
k∗−1 ]dγ.

≤
∫ 1−τ

γ=0

2

γ
k∗−2
k∗−1

√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
dγ

=
√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))∫ 1−τ

γ=0

2

γ
k∗−2
k∗−1

dγ

=
√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
2(k∗ − 1)γ

1
k∗−1

∣∣∣1−τ

0

=
√
d
−(k∗−2)

exp

(
OK

(
log(1/τ)

δ

))
.

Here the inequality follows from Claim 50 and the fact that (1 − τ)
1

k∗−1 ≥ 1 − τ
k∗−1 . This proves the

additional clause.

E.4 Proving Assumptions of Theorem 1 for the Single Index Model.

We need to check that the problem (f∗,Dx, ρ0) introduced in Section E.1 satisfies the Assumptions of
Theorem 1.

Fix a desired loss δ, and let T (δ) be as in Proposition 49.

Local Strong Convexity.

Lemma 51 (Local Strong Convexity for SIM). If d is large enough, then for any t ≤ T (δ), we have for any
w with |ξt(w)− w∗ sign(ξt(w)

Tw∗)| ≤ 1
5K ,

D⊥
t (w) ⪯ −ΩK,Creg

(√
L(ρMF

t )

)
.

Proof. For simplicity, let wt := ξt(w), let α := α(wt). Assume that α ̸= 1; if α = 1, we can take the limit
of the calculations below.

Recall that

D⊥
t (w) =

d

dw
V (wt, ρ

MF
t )
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It is evident that V (wt, ρ
MF
t ) is in the direction w̃ :=

√
1− αw∗ − αw⊥, where w⊥ =

P⊥
w∗wt

∥P⊥
w∗wt∥

, and thus

V (wt, ρ
MF
t ) = v(α, t)

w̃√
1− α2

.

We will consider the quadratic form yTD⊥
t (w)y for y ∈ span w̃ and for y ⊥ span(ξt(w), w

∗). It
suffices to show that for both such vectors we have yTD⊥

t (w)y ≤ −ΩK,Creg

(√
L(ρMF

t )
)
∥y∥2.

Lets start with the first, letting y = w̃. We have

D⊥
t (w)y =

dV (w, ρMF
t )

d(yTw)

=
v(α, t)√
1− α2

dw̃

d(yTwt)
+ v(α, t)w̃

d(1− α2)−1/2

d(yTwt)
+

(
w̃√

1− α2

)
dv(α, t)

d(yTwt)

Now (
w̃√

1− α2

)
dv(α, t)

d(yTwt)
=

(
w̃√

1− α2

)
dv(α, t)

dα

dα

d(yTwt)
= w̃

dv(α, t)

dα
.

Next,

d(1− α2)−1/2

d(yTwt)
=

d(1− α2)−1/2

dα

dα

d(yTwt)

=
−α

(1− α2)3/2
1√

1− α2

=
α

(1− α2)
.

Finally,

dw̃

d(yTwt)
= 0

Thus in summary, putting these three terms together we have

yTD⊥
t (w)y = v(α, t)

α

(1− α2)
+

dv(α, t)

dα
.

By Lemma 46, we have for y = w̃,

yTD⊥
t (w)y ≤ −ΩK,Creg

(√
L(ρMF

t )

)
.
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Now we consider y ⊥ w̃, wt. We have

yT
dV (wt, ρ

MF
t )

d(yTwt)
= yT w̃

d
(

v(α,t)√
1−α2

)
dyTw

+
v(α, t)√
1− α2

yT
dw̃

d(yTwt)

= 0 +
v(α, t)√
1− α2

yT
dw̃

d(yTwt)

= −α
v(α, t)√
1− α2

yT
dw⊥

d(yTwt)

= −α
v(α, t)√
1− α2

yT
y√

1− α2

= −αv(α, t)

1− α2
∥y∥

≤ −ΩK,Creg

(√
L(ρMF

t )

)
.

Here the final inequality follows from Lemma 45.

Proving Assumption 2 for SIM. First we will need the following lemma.

Lemma 52. For any w and s ≤ t ≤ T (δ), we have∥∥∥∥dξt,s(ws)

dw
|ws=ξs(w)

∥∥∥∥ ≤ OK

((
αt(w)

αs(w)

)k∗−1
)
exp

(
OK

(
1

δ

))
.

Proof. It suffices to check that this holds for times where αt(w) ≤ 1
5K , because after that, by Lemma 46,

D⊥
t (w) is negative definite, and so

∥∥∥dξt,s(w)
dw |w=ξs(w)

∥∥∥ can only decrease.

Claim 53. In the setting of of the lemma, for any w with αt(w) ≤ 1
5K , we have∥∥∥∥dξt,s(w)dw

|w=ξs(w)

∥∥∥∥ ≤ OK

(
dαt,s(z)

dz

∣∣∣∣
z=αs(w)

)
+ 1.

Proof. Let ws = ξs(w). Without loss of generality assume wT
s w

∗ > 0 such that αs(w) = ξs(w)
Tw∗. Let

w⊥ :=
P⊥
w∗ws

∥P⊥
w∗ws∥

. We have

ξt,s(ws) = αt,s(ws)w
∗ +

√
1− αt,s(ws)2w⊥.

Thus

dξt,s(ws)

dws
=

dαt,s(ws)

dws
w∗ +

−αt,s(ws)√
1− αt,s(ws)2

dαt,s(ws)

dws
w⊥ +

√
1− αt,s(ws)2√
1− αs(ws)2

P⊥
w∗ ,

and so, since αr(w) is increasing for s ≤ r ≤ t if αs(w) ≥ 1√
d

(see Lemma 45) and αt(w) ≤ 1 − 1
5K , we

have ∥∥∥∥dξt,s(ws)

dw

∥∥∥∥ ≤ OK

(
dαt,s(ws)

dws

)
+ 1.

The conclusion now follows from combining this claim and 47.
We are now ready to bound Jmax and Javg.
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Lemma 54. For any t ≤ T (δ), we have

Jmax ≤ OK,δ(
√
d
2(k∗−1)

)

Javg(τ) ≤ OK,τ,δ(1/T (δ)).

Proof. By Lemma 52, for all w, we have

∥J⊥
t,s(w)∥ = OK,δ

((
αt(w)

αs(w)

)k∗−1
)

(E.4)

We bound this in two cases. Let ι = δ6K
2
. In the first case, if αs(t) ≥ ι√

d
, then this is at most OK,δ(

√
d
k∗−1

)

as desired. In the second case, if αs(w) ≤ ι√
d

, then we can show that αt(w) never exceeds 2αs(w). Indeed,

one can inductively show by Equation (E.2) that for s ≤ r ≤ t, we have v(αr, r) ≤ ι2
√
d
−(k∗−1)

. Since
T (δ) ≤ 1

ι

√
d
k∗−2

, we have αt(w) ≤ 2αs(w). Thus in either case, we have ∥J⊥
t,s(w)∥ = OK,δ(

√
d
k∗−1

).
The desired bound on Jmax is immediate.

To bound Javg we have to be more careful, and we will use an additional averaging lemma (Lemma 55)
which allows us to show that when a set of neurons w are well-dispersed on the sphere at some time s, then
on average over w, H⊥(w,w′) is small for any w′.

Ew∼ρ0∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ )

= Eα∼ρMF
s
Ew∼ρ0|αs(w)=α∥Jt,s(w)H⊥

s (w,w′)v∥1(ξt(w) /∈ Bτ )

≤ Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ) sup

w|αs(w)=α
∥Jt,s(w)∥Ew∼ρ0|αs(w)=α∥H⊥

s (w,w′)v∥

≤ Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ)OK,δ

(
αt(w)

αs(w)

)k∗−1(αt(w)

αs(w)

)k∗−1(
αs(w)

k∗−1 +
√
d
−(k∗−1)

)
Here the first inequality follows from the fact that the event ξt(w) /∈ Bτ is equivalent to the even αt,s(αs(w)) ≤
1− τ . The second inequality is derived from (E.4) and Lemma 55.

Now to bound this expectation, recall the two cases from earlier in the lemma: αs(w) ≤ ι√
d

, and
αs(w) ≥ ι√

d
. Recall that in the first case, αt(w) ≤ 2αs(w). Thus we have

Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ)OK,δ

(
αt(w)

αs(w)

)k∗−1(αt(w)

αs(w)

)k∗−1(
αs(w)

k∗−1 +
√
d
−(k∗−1)

)
≤ OK,δ

(√
d
(k∗−1)

)
+ Ew∼ρMF

t
OK,δ

(
α(w)k

∗−1
)
1(α(w) ≤ 1− τ).

The additional implication in Proposition 49 bounds this second term, yielding

Ew∼ρ0∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤ OK,δ

(√
d
(k∗−1)

)
+
√
d
−(k∗−2)

OK,δ

(
1

τOK(1)

)
= OK,δ,τ (1/T (δ)).

This proves the lemma.
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Lemma 55. For any distribution µ over w, for and w′, v ∈ Sd−1, with ws := ξs(w), we have

sup
w′,v

Ew∼µ∥H⊥
s (w,w′)v∥ ⪅ sup

∥u∥=1

√
Ew∼µ(ws

Tu)2(k∗−1)∥v∥

+ sup
∥u∥=1

√
Ew∼µ(ws

Tu)2(k∗−2)(ws
T v)2.

In particular, if the distribution of ws is rotationally symmetric in some set of dimensions, and has norm at
most α if the remaining dimensions, then

sup
w′,v

Ew∼µ∥H⊥
s (w,w′)v∥ ≤ OK

(
αk−1 +

√
d
−(k∗−1)

)
.

Proof. [Proof of Lemma 55] By Cauchy-Schwartz,

Ew∼µ∥H⊥
s (w,w′)v∥ ≤

√
Ew∼µv(H⊥

s (w,w′))TH⊥
s (w,w′)v.

Let us expand H⊥
s (w,w′). With ws := ξs(w) and := ξs(w

′), we have

H⊥
s (w,w′) =

K−1∑
k=k∗−1

P⊥
ws

(
c(w,w′)(ws

Tu)kI + c′(w,w′)(ws
Tu)k−1uws

T
)
P⊥
u ,

where c(w,w′), c′(w,w′) ≤ Creg. Thus we have

H⊥
s (w,w′)TH⊥

s (w,w′)

⪯
∑
k

2Creg(ws
Tu)2kP⊥

u

+ 2Creg(ws
Tu)2(k−1)P⊥

u wsu
TP⊥

ws
uws

TP⊥
u

⪯ 2Creg(ws
Tu)2(k

∗−1)I

+ 2Creg(ws
Tu)2(k

∗−2)wsws
T ,

and thus

Ew∼µv(H
⊥
s (w,w′))TH⊥

s (w,w′)v ≤ 2Creg(ws
Tu)2(k

∗−1)∥v∥2 + 2Creg(ws
Tu)2(k

∗−1)(vTws)
2.

Taking a square root yields the desired result. The second statement follows observing that Ew[(u
Tws)

k] =

Ok(
√
d
−k

) if u is in the span of the rotationally invariant directions, because uTws
1√
d

- subgaussian.

Proof. [Proof of Theorem 2] Fix a desired loss δ, and let T (δ) = OK(
√
d
k∗−2

δk
∗−1) be as in Proposition 49,

such that

Ex(fρMF
t
(x)− f∗(x))2 ≤ δ.

Let us check the conditions of Theorem 1. First, the regularity conditions in Assumption 1 trivially hold
for Creg = OCSIM(1) by our choice of Gaussian data and σ.

By Lemma 54, up to time T (δ), (f∗, ρ0,Dx) satisfies Assumption 2 with Jmax = OK,δ(d
2(k∗−1)) and

Javg(τ) = OK,δ,τ (1/T (δ)).
Observe that by Lemma 51, (f∗, ρ0,Dx) is (c, τ) local strongly convex up to time T (δ) for c =

ΩK,Creg(1), τ = 1
5K . Further, since the problem has rotational symmetry in all directions orthogonal to the
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w∗ axis, the structured condition holds because by the smoothness of ∇wV (w, ρMF
t )P⊥

w in w, and the fact
that at ∇ξ∞(wi)V (ξ∞(wi), ρ

MF
t )P⊥

ξ∞(wi)
(which approximates D⊥

t (i) to Cregτ error) must be completely in
the space orthogonal to w∗, and is rotationally symmetric in that space. Thus Assumption 4 holds.

Finally, the symmetry conditions in Assumption 5 trivially hold because the data is Guassian, and there
is a reflection symmetry between w∗ and −w∗.

Now suppose n ≥ d11k
∗ ≥ J8

max(T (δ))
6d4 and m ≥ d13k

∗ ≥ J10
max(T (δ))

6d4 such that

ϵn + ϵm =
log(n)d3/2√

n
+

log(mT )max(d1/2Jmax, d
3/2)√

m
≤ 1

dJ4
maxT

3
.

Thus for d large enough, the condition on ϵn+ϵm in Theorem 1 holds. Thus all the assumptions of Theorem 1
hold, and the result guarantees that for t ≤ T (δ), with high probability over the draw of the data and of the
neural network initialization, we have with λ = min(τ, δ),

Ex(fρMF
t
(x)− fρmt (x))

2 ≤ tJmax(ϵm + ϵn) exp

(
O(tJavg(λ))

cλ− Ω(Javg/λ)

)
≤ td2(k

∗−1)(ϵn + ϵm)OK,δ(1).

Combining this with Equation E.4, we have that

Ex(fρMF
t
(x)− fρmt (x))

2 ≤ 2δ2 + 2td2(k
∗−1)(ϵn + ϵm)OK,δ(1) ≤ 3δ2.

This proves the theorem.

F Discussion for Future Work

My goal is to be able to cover as many as possible of the following examples which get progressively harder:

1. Single-Index: f∗(x) = Ew∈{±w∗}σ(w
Tx), σ is even function, finite number of positive coeffs.

2. 2-Index: f∗(x) = Ew∈{±w∗
1 ,±w∗

2}σ(w
Tx), w∗

1 ⊥ w∗
2, σ is even function, finite number of positive

coeffs.

• Trick to analyze MF dynamics here: claim that whatever ρt is, as long as satisfies the obvious
symmetries, the velocity of neuron in correct direction around circle will be greater due to f∗

than due to ρt. (See Desmos for illustration of this inequality). Then hopefully can LB velocity
by some constant times velocity due to f∗ alone.

3. Multi-Index. Extend the above to k-indices for constant k.

4. 2-index, imbalanced. f∗(x) = Ew∈{±w∗
1 ,±w∗

2}cwσ(w
Tx), w∗

1 ⊥ w∗
2, σ has constant Hermite spec-

trum, starting with odd Hermite, Ecw = 1.

5. 2-Index, without rotational symmetry in signal subpace. f∗(x) = Ew∈{±w∗
1 ,±w∗

2}σ(w
Tx), w∗

1 ̸⊥ w∗
2,

σ is odd-Hermite or arbitrary spectrum starting odd.

6. 2-Index, arbitrary support. f∗(x) = Ew∈{±w∗
1 ,±w∗

2 ,··· ,±w∗
k}σ(w

Tx), σ is odd-Hermite or arbitrary
spectrum starting odd.

7. Manifold [Requires proving Lemma 56, which I don’t know how to do]
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• f∗(x) = Ew∈{Sk−1}σ(w
Tx), σ is odd-Hermite

• Single-Index with misspecification

Lemma 56. Let {wi}i∈[m] be any set of vectors on Sd−1. Let ∆ ∈ Rm×d be such that ∆i ⊥ wi. Suppose
the first non-zero Hermite coefficient of σ is k. Then

Ew∼Sα∥m(w)∥2 ≤ α2(k−1)Ex(h(x))
2.

Here we recall the definitions:

h(x) := Eiσ
′(wT

i x)∆
T
i x

m(w) := Exh(x)σ
′(wTx)P⊥

w x,

and Sα is the distribution w ∼ Sd−1|wT e1 = α.
Note, one can expand out the LHS as

Ex,x′
(
Ei∆

T
i xσ

′(wT
i x)

)(
Ew∼Sασ

′(wTx)xTP⊥
w x′σ′(wTx′)

)(
Ei∆

T
i x

′σ′(wT
i x

′)
)

And the RHS using

Ex(h(x))
2 = Ei,j∆

T
i Exσ

′(wT
i x)σ

′(wT
j x)xxT∆j
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